Data-driven methodology for discovery and response to pulmonary symptomology in hypertension through statistical learning and data mining: Application to COVID-19 related pharmacovigilance

  1. Xuan Xu
  2. Jessica Kawakami
  3. Nuwan Indika Millagaha Gedara
  4. Jim Riviere
  5. Emma Meyer
  6. Gerald J Wyckoff
  7. Majid Jaberi-Douraki  Is a corresponding author
  1. Kansas State University, United States
  2. University of Missouri-Kansas City, United States

Abstract

Background: Potential therapy and confounding factors including typical co‐administered medications, patient's disease states, disease prevalence, patient demographics, medical histories, and reasons for prescribing a drug often are incomplete, conflicting, missing, or uncharacterized in spontaneous adverse drug event (ADE) reporting systems. These missing or incomplete features can affect and limit the application of quantitative methods in pharmacovigilance for meta-analyses of data during randomized clinical trials.

Methods: Data from patients with hypertension were retrieved and integrated from the FDA Adverse Event Reporting System. 134 antihypertensive drugs out of 1151 drugs were filtered and then evaluated using the Empirical Bayes Geometric Mean (EBGM) of the posterior distribution to build ADE-drug profiles with an emphasis on the pulmonary ADEs (pADE). Afterward, the Graphical Least Absolute Shrinkage and Selection Operator (GLASSO) captured drug associations based on pADEs by correcting hidden factors and confounder misclassification. Selected drugs were then compared using the Friedman test in drug classes and clusters obtained from GLASSO.

Results: Following multiple filtering stages to exclude insignificant and noise-driven reports, we found that drugs from antihypertensives agents, urologicals, and antithrombotic agents (macitentan, bosentan, epoprostenol, selexipag, sildenafil, tadalafil, and beraprost) form a similar class with a significantly higher incidence of pADEs. Macitentan and bosentan were associates with 64% and 56% of pADEs, respectively. Because these two medications are prescribed in diseases affecting pulmonary function and may be likely to emerge among the highest reported pADEs, in fact, they serve to validate the methods utilized here. Conversely, doxazosin and rilmenidine were found to have the least pADEs in selected drugs from hypertension patients. Nifedipine and candesartan were also found by signal detection methods to form a drug cluster, shown by several studies an effective combination of these drugs on lowering blood pressure and appeared an improved side effect profile in comparison with single-agent monotherapy.

Conclusions: We consider pADE profiles in multiple long-standing groups of therapeutics including antihypertensive agents, antithrombotic agents, beta-blocking agents, calcium channel blockers, or agents acting on the renin-angiotensin system, in patients with hypertension associated with high-risk for COVID-19. We found that several individual drugs have significant differences between their drug classes and compared to other drug classes. For instance, macitentan and bosentan from endothelin receptor antagonists show major concern while doxazosin and rilmenidine exhibited the least pADEs compared to the outcomes of other drugs. Using techniques in this study, we assessed and confirmed the hypothesis that drugs from the same drug class could have very different pADE profiles affecting outcomes in acute respiratory illness.

Funding: GJW and MJD accepted funding from BioNexus KC for funding on this project, but BioNexus KC had no direct role in this article.

Data availability

The source code and data used to produce results and analyses presented in this manuscript areavailable at:https://1data.life/pages/publication/data_driven_methodology_COVID19_related_pharmacovigilance/

The following previously published data sets were used

Article and author information

Author details

  1. Xuan Xu

    Department of Mathematics, Kansas State University, Olathe, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jessica Kawakami

    School of Pharmacy, University of Missouri-Kansas City, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7141-5698
  3. Nuwan Indika Millagaha Gedara

    Department of Mathematics, Kansas State University, Olathe, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jim Riviere

    Department of Mathematics, Kansas State University, Olathe, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Emma Meyer

    Molecular Biology and Biochemistry, University of Missouri-Kansas City, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Gerald J Wyckoff

    Molecular Biology and Biochemistry, University of Missouri-Kansas City, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Majid Jaberi-Douraki

    Department of Mathematics, Kansas State University, Olathe, United States
    For correspondence
    jaberi@k-state.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8505-6550

Funding

BioNexus KC (20-7)

  • Gerald J Wyckoff
  • Majid Jaberi-Douraki

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Arduino A Mangoni, Flinders Medical Centre, Australia

Version history

  1. Received: May 27, 2021
  2. Preprint posted: June 12, 2021 (view preprint)
  3. Accepted: November 21, 2021
  4. Accepted Manuscript published: November 23, 2021 (version 1)
  5. Version of Record published: January 12, 2022 (version 2)

Copyright

© 2021, Xu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,076
    views
  • 203
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xuan Xu
  2. Jessica Kawakami
  3. Nuwan Indika Millagaha Gedara
  4. Jim Riviere
  5. Emma Meyer
  6. Gerald J Wyckoff
  7. Majid Jaberi-Douraki
(2021)
Data-driven methodology for discovery and response to pulmonary symptomology in hypertension through statistical learning and data mining: Application to COVID-19 related pharmacovigilance
eLife 10:e70734.
https://doi.org/10.7554/eLife.70734

Share this article

https://doi.org/10.7554/eLife.70734

Further reading

    1. Computational and Systems Biology
    Hedi Chen, Xiaoyu Fan ... Boxue Tian
    Research Article

    Accurate prediction of the structurally diverse complementarity determining region heavy chain 3 (CDR-H3) loop structure remains a primary and long-standing challenge for antibody modeling. Here, we present the H3-OPT toolkit for predicting the 3D structures of monoclonal antibodies and nanobodies. H3-OPT combines the strengths of AlphaFold2 with a pre-trained protein language model and provides a 2.24 Å average RMSD between predicted and experimentally determined CDR-H3 loops, thus outperforming other current computational methods in our non-redundant high-quality dataset. The model was validated by experimentally solving three structures of anti-VEGF nanobodies predicted by H3-OPT. We examined the potential applications of H3-OPT through analyzing antibody surface properties and antibody–antigen interactions. This structural prediction tool can be used to optimize antibody–antigen binding and engineer therapeutic antibodies with biophysical properties for specialized drug administration route.

    1. Computational and Systems Biology
    2. Medicine
    Zachary Shaffer, Roberto Romero ... Nardhy Gomez-Lopez
    Research Article

    Background:

    Preterm birth is the leading cause of neonatal morbidity and mortality worldwide. Most cases of preterm birth occur spontaneously and result from preterm labor with intact (spontaneous preterm labor [sPTL]) or ruptured (preterm prelabor rupture of membranes [PPROM]) membranes. The prediction of spontaneous preterm birth (sPTB) remains underpowered due to its syndromic nature and the dearth of independent analyses of the vaginal host immune response. Thus, we conducted the largest longitudinal investigation targeting vaginal immune mediators, referred to herein as the immunoproteome, in a population at high risk for sPTB.

    Methods:

    Vaginal swabs were collected across gestation from pregnant women who ultimately underwent term birth, sPTL, or PPROM. Cytokines, chemokines, growth factors, and antimicrobial peptides in the samples were quantified via specific and sensitive immunoassays. Predictive models were constructed from immune mediator concentrations.

    Results:

    Throughout uncomplicated gestation, the vaginal immunoproteome harbors a cytokine network with a homeostatic profile. Yet, the vaginal immunoproteome is skewed toward a pro-inflammatory state in pregnant women who ultimately experience sPTL and PPROM. Such an inflammatory profile includes increased monocyte chemoattractants, cytokines indicative of macrophage and T-cell activation, and reduced antimicrobial proteins/peptides. The vaginal immunoproteome has improved predictive value over maternal characteristics alone for identifying women at risk for early (<34 weeks) sPTB.

    Conclusions:

    The vaginal immunoproteome undergoes homeostatic changes throughout gestation and deviations from this shift are associated with sPTB. Furthermore, the vaginal immunoproteome can be leveraged as a potential biomarker for early sPTB, a subset of sPTB associated with extremely adverse neonatal outcomes.

    Funding:

    This research was conducted by the Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS) under contract HHSN275201300006C. ALT, KRT, and NGL were supported by the Wayne State University Perinatal Initiative in Maternal, Perinatal and Child Health.