Human B cell lineages associated with germinal centers following influenza vaccination are measurably evolving

  1. Kenneth B Hoehn
  2. Jackson S Turner
  3. Frederick I Miller
  4. Ruoyi Jiang
  5. Oliver G Pybus
  6. Ali H Ellebedy
  7. Steven H Kleinstein  Is a corresponding author
  1. Yale School of Medicine, United States
  2. Washington University School of Medicine, St Louis, United States
  3. Worcester Polytechnic Institute, United States
  4. University of Oxford, United Kingdom

Abstract

The poor efficacy of seasonal influenza virus vaccines is often attributed to pre-existing immunity interfering with the persistence and maturation of vaccine-induced B cell responses. We previously showed that a subset of vaccine-induced B cell lineages are recruited into germinal centers (GCs) following vaccination, suggesting that affinity maturation of these lineages against vaccine antigens can occur. However, it remains to be determined whether seasonal influenza vaccination stimulates additional evolution of vaccine-specific lineages, and previous work has found no significant increase in somatic hypermutation (SHM) among influenza-binding lineages sampled from the blood following seasonal vaccination in humans. Here, we investigate this issue using a phylogenetic test of measurable immunoglobulin sequence evolution. We first validate this test through simulations and survey measurable evolution across multiple conditions. We find significant heterogeneity in measurable B cell evolution across conditions, with enrichment in primary response conditions such as HIV infection and early childhood development. We then show that measurable evolution following influenza vaccination is highly compartmentalized: while lineages in the blood are rarely measurably evolving following influenza vaccination, lineages containing GC B cells are frequently measurably evolving. Many of these lineages appear to derive from memory B cells. We conclude from these findings that seasonal influenza virus vaccination can stimulate additional evolution of responding B cell lineages, and imply that the poor efficacy of seasonal influenza vaccination is not due to a complete inhibition of vaccine-specific B cell evolution.

Data availability

The manuscript is a computational study. All data used are publicaly available. Source code are available at https://bitbucket.org/kleinstein/projects.

The following previously published data sets were used

Article and author information

Author details

  1. Kenneth B Hoehn

    Yale School of Medicine, New Haven, United States
    Competing interests
    Kenneth B Hoehn, K.B.H. receives consulting fees from Prellis Biologics..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0411-4307
  2. Jackson S Turner

    Washington University School of Medicine, St Louis, St Louis, United States
    Competing interests
    No competing interests declared.
  3. Frederick I Miller

    Worcester Polytechnic Institute, Worcester, United States
    Competing interests
    No competing interests declared.
  4. Ruoyi Jiang

    Yale School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
  5. Oliver G Pybus

    Department of Zoology, University of Oxford, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  6. Ali H Ellebedy

    Washington University School of Medicine, St Louis, St Louis, United States
    Competing interests
    Ali H Ellebedy, The Ellebedy laboratory received funding under sponsored research agreements from Emergent BioSolutions and AbbVie..
  7. Steven H Kleinstein

    Yale School of Medicine, New Haven, United States
    For correspondence
    steven.kleinstein@yale.edu
    Competing interests
    Steven H Kleinstein, receives consulting fees from Northrop Grumman..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4957-1544

Funding

National Institute of Allergy and Infectious Diseases (R01 AI104739)

  • Steven H Kleinstein

FP7 Ideas: European Research Council (614725-PATHPHYLODYN)

  • Oliver G Pybus

National Institute of Allergy and Infectious Diseases (R21 AI139813)

  • Ali H Ellebedy

National Institute of Allergy and Infectious Diseases (U01 AI141990)

  • Ali H Ellebedy

National Institute of Allergy and Infectious Diseases (HHSN272201400006C)

  • Ali H Ellebedy

National Institute of Allergy and Infectious Diseases (5T32CA009547)

  • Jackson S Turner

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Armita Nourmohammad, University of Washington, United States

Version history

  1. Preprint posted: January 7, 2021 (view preprint)
  2. Received: June 1, 2021
  3. Accepted: November 11, 2021
  4. Accepted Manuscript published: November 17, 2021 (version 1)
  5. Accepted Manuscript updated: November 25, 2021 (version 2)
  6. Version of Record published: January 7, 2022 (version 3)

Copyright

© 2021, Hoehn et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,322
    views
  • 426
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kenneth B Hoehn
  2. Jackson S Turner
  3. Frederick I Miller
  4. Ruoyi Jiang
  5. Oliver G Pybus
  6. Ali H Ellebedy
  7. Steven H Kleinstein
(2021)
Human B cell lineages associated with germinal centers following influenza vaccination are measurably evolving
eLife 10:e70873.
https://doi.org/10.7554/eLife.70873

Share this article

https://doi.org/10.7554/eLife.70873

Further reading

    1. Computational and Systems Biology
    2. Neuroscience
    Sara Ibañez, Nilapratim Sengupta ... Christina M Weaver
    Research Article

    Normal aging leads to myelin alterations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are positively correlated with degree of cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First, we built a multicompartment pyramidal neuron model fit to monkey dlPFC empirical data, with an axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions. This model was used to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination. Next, we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from ultrastructure up to behavior during normal aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.

    1. Computational and Systems Biology
    2. Neuroscience
    Andrea I Luppi, Pedro AM Mediano ... Emmanuel A Stamatakis
    Research Article

    How is the information-processing architecture of the human brain organised, and how does its organisation support consciousness? Here, we combine network science and a rigorous information-theoretic notion of synergy to delineate a ‘synergistic global workspace’, comprising gateway regions that gather synergistic information from specialised modules across the human brain. This information is then integrated within the workspace and widely distributed via broadcaster regions. Through functional MRI analysis, we show that gateway regions of the synergistic workspace correspond to the human brain’s default mode network, whereas broadcasters coincide with the executive control network. We find that loss of consciousness due to general anaesthesia or disorders of consciousness corresponds to diminished ability of the synergistic workspace to integrate information, which is restored upon recovery. Thus, loss of consciousness coincides with a breakdown of information integration within the synergistic workspace of the human brain. This work contributes to conceptual and empirical reconciliation between two prominent scientific theories of consciousness, the Global Neuronal Workspace and Integrated Information Theory, while also advancing our understanding of how the human brain supports consciousness through the synergistic integration of information.