Mitochondrial phenotypes in purified human immune cell subtypes and cell mixtures

  1. Shannon Rausser
  2. Caroline Trumpff
  3. Marlon A McGill
  4. Alex Junker
  5. Wei Wang
  6. Siu-hong Ho
  7. Anika Mitchell
  8. Kalpita R Karan
  9. Catherine E Monk
  10. Suzanne C Segerstrom
  11. Rebecca G Reed
  12. Martin Picard  Is a corresponding author
  1. Columbia University Irving Medical Center, United States
  2. University of Kentucky, United States
  3. University of Pittsburgh, United States

Abstract

Using a high-throughput mitochondrial phenotyping platform to quantify multiple mitochondrial features among molecularly-defined immune cell subtypes, we quantify the natural variation in citrate synthase, mitochondrial DNA copy number (mtDNAcn), and respiratory chain enzymatic activities in human neutrophils, monocytes, B cells, and naïve and memory T lymphocyte subtypes. In mixed peripheral blood mononuclear cells (PBMCs) from the same individuals, we show to what extent mitochondrial measures are confounded by both cell type distributions and contaminating platelets. Cell subtype-specific measures among women and men spanning 4 decades of life indicate potential age- and sex-related differences, including an age-related elevation in mtDNAcn, which are masked or blunted in mixed PBMCs. Finally, a proof-of-concept, repeated-measures study in a single individual validates cell type differences and also reveals week-to-week changes in mitochondrial activities. Larger studies are required to validate and mechanistically extend these findings. These mitochondrial phenotyping data build upon established immunometabolic differences among leukocyte sub-populations, and provide foundational quantitative knowledge to develop interpretable blood-based assays of mitochondrial health.

Data availability

All data generated and analyzed during this study, including mitochondrial biochemistry, mtDNA content, and blood chemistry, cell counts from CBC and flow cytometry, and de-identified participant information are included in the supporting data files. Source data files have been provided for Figures 1-9, and for figure supplements (Figure 1-figure supplement 3, Figure 2-figure supplement 1, Figure 4-figure supplement 1, Figure 4-figure supplement 2, Figure 6-figure supplement 1, Figure 6-figure supplement 2, Figure 6-figure supplement 3, and Supplementary file 3). Requests for resources or other information should be directed to and will be fulfilled by the corresponding author.

Article and author information

Author details

  1. Shannon Rausser

    Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0425-1571
  2. Caroline Trumpff

    Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Marlon A McGill

    Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Alex Junker

    Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Wei Wang

    Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9890-2122
  6. Siu-hong Ho

    Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Anika Mitchell

    Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Kalpita R Karan

    Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Catherine E Monk

    Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Suzanne C Segerstrom

    University of Kentucky, Lexington, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Rebecca G Reed

    University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Martin Picard

    Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, United States
    For correspondence
    martin.picard@columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2835-0478

Funding

Nathaniel Wharton Fund

  • Martin Picard

National Institutes of Health (MH119336,GM119793,MH122706,AG066828,AG056635,AG026307,UL1TR001873)

  • Martin Picard

National Institutes of Health (P30CA013696)

  • Wei Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study was approved by New York State Psychiatric Institute (Protocol #7618) and all participants provided written informed consent for the study procedures and reporting of results.

Copyright

© 2021, Rausser et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,053
    views
  • 808
    downloads
  • 63
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shannon Rausser
  2. Caroline Trumpff
  3. Marlon A McGill
  4. Alex Junker
  5. Wei Wang
  6. Siu-hong Ho
  7. Anika Mitchell
  8. Kalpita R Karan
  9. Catherine E Monk
  10. Suzanne C Segerstrom
  11. Rebecca G Reed
  12. Martin Picard
(2021)
Mitochondrial phenotypes in purified human immune cell subtypes and cell mixtures
eLife 10:e70899.
https://doi.org/10.7554/eLife.70899

Share this article

https://doi.org/10.7554/eLife.70899

Further reading

    1. Cancer Biology
    2. Cell Biology
    Zuzana Outla, Gizem Oyman-Eyrilmez ... Martin Gregor
    Research Article

    The most common primary malignancy of the liver, hepatocellular carcinoma (HCC), is a heterogeneous tumor entity with high metastatic potential and complex pathophysiology. Increasing evidence suggests that tissue mechanics plays a critical role in tumor onset and progression. Here, we show that plectin, a major cytoskeletal crosslinker protein, plays a crucial role in mechanical homeostasis and mechanosensitive oncogenic signaling that drives hepatocarcinogenesis. Our expression analyses revealed elevated plectin levels in liver tumors, which correlated with poor prognosis for HCC patients. Using autochthonous and orthotopic mouse models we demonstrated that genetic and pharmacological inactivation of plectin potently suppressed the initiation and growth of HCC. Moreover, plectin targeting potently inhibited the invasion potential of human HCC cells and reduced their metastatic outgrowth in the lung. Proteomic and phosphoproteomic profiling linked plectin-dependent disruption of cytoskeletal networks to attenuation of oncogenic FAK, MAPK/Erk, and PI3K/Akt signatures. Importantly, by combining cell line-based and murine HCC models, we show that plectin inhibitor plecstatin-1 (PST) is well-tolerated and potently inhibits HCC progression. In conclusion, our study demonstrates that plectin-controlled cytoarchitecture is a key determinant of HCC development and suggests that pharmacologically induced disruption of mechanical homeostasis may represent a new therapeutic strategy for HCC treatment.

    1. Cell Biology
    2. Medicine
    Pengbo Chen, Bo Li ... Xinfeng Zheng
    Research Article

    Background:

    It has been reported that loss of PCBP2 led to increased reactive oxygen species (ROS) production and accelerated cell aging. Knockdown of PCBP2 in HCT116 cells leads to significant downregulation of fibroblast growth factor 2 (FGF2). Here, we tried to elucidate the intrinsic factors and potential mechanisms of bone marrow mesenchymal stromal cells (BMSCs) aging from the interactions among PCBP2, ROS, and FGF2.

    Methods:

    Unlabeled quantitative proteomics were performed to show differentially expressed proteins in the replicative senescent human bone marrow mesenchymal stromal cells (RS-hBMSCs). ROS and FGF2 were detected in the loss-and-gain cell function experiments of PCBP2. The functional recovery experiments were performed to verify whether PCBP2 regulates cell function through ROS/FGF2-dependent ways.

    Results:

    PCBP2 expression was significantly lower in P10-hBMSCs. Knocking down the expression of PCBP2 inhibited the proliferation while accentuated the apoptosis and cell arrest of RS-hBMSCs. PCBP2 silence could increase the production of ROS. On the contrary, overexpression of PCBP2 increased the viability of both P3-hBMSCs and P10-hBMSCs significantly. Meanwhile, overexpression of PCBP2 led to significantly reduced expression of FGF2. Overexpression of FGF2 significantly offset the effect of PCBP2 overexpression in P10-hBMSCs, leading to decreased cell proliferation, increased apoptosis, and reduced G0/G1 phase ratio of the cells.

    Conclusions:

    This study initially elucidates that PCBP2 as an intrinsic aging factor regulates the replicative senescence of hBMSCs through the ROS-FGF2 signaling axis.

    Funding:

    This study was supported by the National Natural Science Foundation of China (82172474).