Enrichment of SARM1 alleles encoding variants with constitutively hyperactive NADase in patients with ALS and other motor nerve disorders

  1. Jonathan Gilley  Is a corresponding author
  2. Oscar Jackson
  3. Menelaos Pipis
  4. Mehrdad A Estiar
  5. Ammar Al-Chalabi
  6. Matt C Danzi
  7. Kristel R van Eijk
  8. Stephen A Goutman
  9. Matthew B Harms
  10. Henry Houlden
  11. Alfredo Iacoangeli
  12. Julia Kaye
  13. Leandro Lima
  14. Queen Square Genomics
  15. John Ravits
  16. Guy A Rouleau
  17. Rebecca Schüle
  18. Jishu Xu
  19. Stephan Zuchner
  20. John Cooper-Knock
  21. Ziv Gan-Or
  22. Mary M Reilly
  23. Michael P Coleman  Is a corresponding author
  1. University of Cambridge, United Kingdom
  2. University College London, United Kingdom
  3. McGill University, Canada
  4. King's College London, United Kingdom
  5. University of Miami Miller School of Medicine, United States
  6. Utrecht University, Netherlands
  7. University of Michigan, United States
  8. Columbia University, United States
  9. Gladstone Institutes, United States
  10. University of California, San Diego, United States
  11. University of Tübingen, Germany
  12. University of Sheffield, United Kingdom

Abstract

SARM1, a protein with critical NADase activity, is a central executioner in a conserved programme of axon degeneration. We report seven rare missense or in-frame microdeletion human SARM1 variant alleles in patients with amyotrophic lateral sclerosis (ALS) or other motor nerve disorders that alter the SARM1 auto-inhibitory ARM domain and constitutively hyperactivate SARM1 NADase activity. The constitutive NADase activity of these seven variants is similar to that of SARM1 lacking the entire ARM domain and greatly exceeds the activity of wild-type SARM1, even in the presence of nicotinamide mononucleotide (NMN), its physiological activator. This rise in constitutive activity alone is enough to promote neuronal degeneration in response to otherwise non-harmful, mild stress. Importantly, these strong gain-of-function alleles are completely patient-specific in the cohorts studied and show a highly significant association with disease at the single gene level. These findings of disease-associated coding variants that alter SARM1 function build on previously reported genome-wide significant association with ALS for a neighbouring, more common SARM1 intragenic single nucleotide polymorphism (SNP) to support a contributory role of SARM1 in these disorders. A broad phenotypic heterogeneity and variable age-of-onset of disease among patients with these alleles also raises intriguing questions about the pathogenic mechanism of hyperactive SARM1 variants.

Data availability

Genomic data was requested from a variety of previously published datasets from whom interested researchers can request access: Project MinE (https://www.projectmine.com/research/data-sharing/); Answer ALS (https://www.nygenome.org/als-consortium/); GENESIS (https://neuropathycommons.org/genetics/genesis-platform); UCL rare disease (neurology) dataset (available on request from Prof. Henry Houlden); HSP study (available on request from Dr. Rebecca Schüle); Lothian Birth Cohort (https://www.ed.ac.uk/lothian-birth-cohorts/data-access-collaboration). Further information about how to gain access to these datasets and any restrictions on who can gain access to the data is provided on these websites. The specifics of the datasets used are outlined in the Materials and Methods section, and are listed in Tables 1-4. Source data files of processed numerical data and raw blot images have been provided for Figures 2, 3, 4, 5, 6 and 7 and Figure 2 - figure supplement 2, Figure 3 - figure supplement 2 and Figure 6 - figure supplements 1 and 2.

Article and author information

Author details

  1. Jonathan Gilley

    Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    jg792@cam.ac.uk
    Competing interests
    Jonathan Gilley, Part-funded by AstraZeneca during the past 3 years..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9510-7956
  2. Oscar Jackson

    Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    Oscar Jackson, Currently part-funded by AstraZeneca..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1825-9331
  3. Menelaos Pipis

    Department of Neuromuscular Disease, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  4. Mehrdad A Estiar

    McGill University, Montreal, Canada
    Competing interests
    No competing interests declared.
  5. Ammar Al-Chalabi

    King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  6. Matt C Danzi

    University of Miami Miller School of Medicine, Miami, United States
    Competing interests
    No competing interests declared.
  7. Kristel R van Eijk

    Department of Neurology, Utrecht University, Utrecht, Netherlands
    Competing interests
    No competing interests declared.
  8. Stephen A Goutman

    Department of Neurology, University of Michigan, Ann Arbor, United States
    Competing interests
    No competing interests declared.
  9. Matthew B Harms

    Columbia University, New York, United States
    Competing interests
    No competing interests declared.
  10. Henry Houlden

    Department of Molecular Neuroscience, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  11. Alfredo Iacoangeli

    King's College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  12. Julia Kaye

    Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, United States
    Competing interests
    No competing interests declared.
  13. Leandro Lima

    Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, United States
    Competing interests
    No competing interests declared.
  14. Queen Square Genomics

  15. John Ravits

    University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  16. Guy A Rouleau

    McGill University, Montreal, Canada
    Competing interests
    No competing interests declared.
  17. Rebecca Schüle

    University of Tübingen, Tübingen, Germany
    Competing interests
    No competing interests declared.
  18. Jishu Xu

    University of Tübingen, Tübingen, Germany
    Competing interests
    No competing interests declared.
  19. Stephan Zuchner

    University of Miami Miller School of Medicine, Miami, United States
    Competing interests
    No competing interests declared.
  20. John Cooper-Knock

    University of Sheffield, Sheffield, United Kingdom
    Competing interests
    No competing interests declared.
  21. Ziv Gan-Or

    McGill University, Montreal, Canada
    Competing interests
    No competing interests declared.
  22. Mary M Reilly

    MRC Centre for Neuromuscular Diseases, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  23. Michael P Coleman

    Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    mc469@cam.ac.uk
    Competing interests
    Michael P Coleman, Consults for Nura Bio, but no support provided for this work..

Funding

Biotechnology and Biological Sciences Research Council (BB/S009582/1)

  • Jonathan Gilley
  • Oscar Jackson
  • Michael P Coleman

EU Joint Programme – Neurodegenerative Disease Research

  • Ammar Al-Chalabi

Robert Packard Center for ALS Research, Johns Hopkins University

  • Jonathan Gilley
  • Michael P Coleman

Wellcome Trust (216596/Z/19/Z)

  • John Cooper-Knock

Wellcome Trust (220906/Z/20/Z)

  • Jonathan Gilley
  • Oscar Jackson
  • Menelaos Pipis
  • Mary M Reilly
  • Michael P Coleman

National Institutes of Neurological Diseases and Stroke and office of Rare Diseases (U54NS065712)

  • Menelaos Pipis
  • Mary M Reilly

National Institute of Neurological Disorders and Stroke (5R01NS072248-10 and 5R01NS105755-03)

  • Matt C Danzi
  • Stephan Zuchner

Medical Research Council (MR/L501529/1 and MR/R024804/1)

  • Ammar Al-Chalabi

Economic and Social Research Council (ES/L008238/1)

  • Ammar Al-Chalabi

National Institute of Environmental Health Sciences (K23ES027221)

  • Stephen A Goutman

Motor Neurone Disease Association

  • Ammar Al-Chalabi
  • Alfredo Iacoangeli

NIHR Biomedical Research Centre, Royal Marsden NHS Foundation Trust/Institute of Cancer Research

  • Ammar Al-Chalabi
  • Alfredo Iacoangeli

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. J Paul Taylor, St Jude Children's Research Hospital, United States

Ethics

Human subjects: This is a retrospective study using anonymised data so specific consent was not obtained by the authors, but informed consent and consent to publish was obtained at each site that contributed patient information to this study in accordance with their local Institutional Review Boards (IRBs).

Version history

  1. Received: June 2, 2021
  2. Preprint posted: June 17, 2021 (view preprint)
  3. Accepted: November 18, 2021
  4. Accepted Manuscript published: November 19, 2021 (version 1)
  5. Accepted Manuscript updated: November 22, 2021 (version 2)
  6. Version of Record published: January 6, 2022 (version 3)

Copyright

© 2021, Gilley et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,749
    views
  • 536
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jonathan Gilley
  2. Oscar Jackson
  3. Menelaos Pipis
  4. Mehrdad A Estiar
  5. Ammar Al-Chalabi
  6. Matt C Danzi
  7. Kristel R van Eijk
  8. Stephen A Goutman
  9. Matthew B Harms
  10. Henry Houlden
  11. Alfredo Iacoangeli
  12. Julia Kaye
  13. Leandro Lima
  14. Queen Square Genomics
  15. John Ravits
  16. Guy A Rouleau
  17. Rebecca Schüle
  18. Jishu Xu
  19. Stephan Zuchner
  20. John Cooper-Knock
  21. Ziv Gan-Or
  22. Mary M Reilly
  23. Michael P Coleman
(2021)
Enrichment of SARM1 alleles encoding variants with constitutively hyperactive NADase in patients with ALS and other motor nerve disorders
eLife 10:e70905.
https://doi.org/10.7554/eLife.70905

Share this article

https://doi.org/10.7554/eLife.70905

Further reading

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Jean-David Larouche, Céline M Laumont ... Claude Perreault
    Research Article

    Transposable elements (TEs) are repetitive sequences representing ~45% of the human and mouse genomes and are highly expressed by medullary thymic epithelial cells (mTECs). In this study, we investigated the role of TEs on T-cell development in the thymus. We performed multiomic analyses of TEs in human and mouse thymic cells to elucidate their role in T-cell development. We report that TE expression in the human thymus is high and shows extensive age- and cell lineage-related variations. TE expression correlates with multiple transcription factors in all cell types of the human thymus. Two cell types express particularly broad TE repertoires: mTECs and plasmacytoid dendritic cells (pDCs). In mTECs, transcriptomic data suggest that TEs interact with transcription factors essential for mTEC development and function (e.g., PAX1 and REL), and immunopeptidomic data showed that TEs generate MHC-I-associated peptides implicated in thymocyte education. Notably, AIRE, FEZF2, and CHD4 regulate small yet non-redundant sets of TEs in murine mTECs. Human thymic pDCs homogenously express large numbers of TEs that likely form dsRNA, which can activate innate immune receptors, potentially explaining why thymic pDCs constitutively secrete IFN ɑ/β. This study highlights the diversity of interactions between TEs and the adaptive immune system. TEs are genetic parasites, and the two thymic cell types most affected by TEs (mTEcs and pDCs) are essential to establishing central T-cell tolerance. Therefore, we propose that orchestrating TE expression in thymic cells is critical to prevent autoimmunity in vertebrates.

    1. Genetics and Genomics
    Pianpian Zhao, Zhifeng Sheng ... Hou-Feng Zheng
    Research Article

    The ‘diabetic bone paradox’ suggested that type 2 diabetes (T2D) patients would have higher areal bone mineral density (BMD) but higher fracture risk than individuals without T2D. In this study, we found that the genetically predicted T2D was associated with higher BMD and lower risk of fracture in both weighted genetic risk score (wGRS) and two-sample Mendelian randomization (MR) analyses. We also identified ten genomic loci shared between T2D and fracture, with the top signal at SNP rs4580892 in the intron of gene RSPO3. And the higher expression in adipose subcutaneous and higher protein level in plasma of RSPO3 were associated with increased risk of T2D, but decreased risk of fracture. In the prospective study, T2D was observed to be associated with higher risk of fracture, but BMI mediated 30.2% of the protective effect. However, when stratified by the T2D-related risk factors for fracture, we observed that the effect of T2D on the risk of fracture decreased when the number of T2D-related risk factors decreased, and the association became non-significant if the T2D patients carried none of the risk factors. In conclusion, the genetically determined T2D might not be associated with higher risk of fracture. And the shared genetic architecture between T2D and fracture suggested a top signal around RSPO3 gene. The observed effect size of T2D on fracture risk decreased if the T2D-related risk factors could be eliminated. Therefore, it is important to manage the complications of T2D to prevent the risk of fracture.