Abstract

Stem cell homeostasis in plant shoot meristems requires tight coordiantion between stem cell proliferation and cell differentiation. In Arabidopsis, stem cells express the secreted dodecapeptide CLAVATA3 (CLV3), which signals through the leucine-rich repeat (LRR)-receptor kinase CLAVATA1 (CLV1) and related CLV1-family members to downregulate expression of the homeodomain transcription factor WUSCHEL (WUS). WUS protein moves from cells below the stem cell domain to the meristem tip and promotes stem cell identity, together with CLV3 expression, generating a negative feedback loop. How stem cell activity in the meristem centre is coordinated with organ initiation and cell differentiation at the periphery is unknown. We show here that the CLE40 gene, encoding a secreted peptide closely related to CLV3, is expressed in the SAM in differentiating cells in a pattern complementary to that of CLV3. CLE40 promotes WUS expression via BAM1, a CLV1-family receptor, and CLE40 expression is in turn repressed in a WUS-dependent manner. Together, CLE40-BAM1-WUS establish a second negative feedback loop. We propose that stem cell homeostasis is achieved through two intertwined pathways that adjust WUS activity and incorporate information on the size of the stem cell domain, via CLV3-CLV1, and on cell differentiation via CLE40-BAM1.

Data availability

Original microscopy and image analysis data represented in the manuscript is available via Dryad (https://doi.org/10.5061/dryad.1g1jwstwf), all other experimental replicates are available at BioImage Archive (S-BSST723).

The following data sets were generated

Article and author information

Author details

  1. Jenia Schlegel

    Heinrich-Heine University, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0434-4479
  2. Gregoire Denay

    Heinrich-Heine University, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8850-3029
  3. Rene H Wink

    Heinrich-Heine University, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Karine Gustavo Pinto

    Heinrich-Heine University, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Yvonne Stahl

    Heinrich-Heine University, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Julia Schmid

    Heinrich-Heine University, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Patrick Blümke

    Heinrich-Heine University, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7315-6792
  8. Rüdiger GW Simon

    Heinrich-Heine University, Düsseldorf, Germany
    For correspondence
    ruediger.simon@hhu.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1317-7716

Funding

Deutsche Forschungsgemeinschaft (iGRAD-PLANT,CEPLAS,SFB1208)

  • Gregoire Denay

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sheila McCormick, University of California, Berkeley, United States

Version history

  1. Received: June 2, 2021
  2. Preprint posted: June 16, 2021 (view preprint)
  3. Accepted: September 30, 2021
  4. Accepted Manuscript published: October 13, 2021 (version 1)
  5. Version of Record published: November 16, 2021 (version 2)

Copyright

© 2021, Schlegel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,972
    views
  • 822
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jenia Schlegel
  2. Gregoire Denay
  3. Rene H Wink
  4. Karine Gustavo Pinto
  5. Yvonne Stahl
  6. Julia Schmid
  7. Patrick Blümke
  8. Rüdiger GW Simon
(2021)
Control of Arabidopsis shoot stem cell homeostasis by two antagonistic CLE peptide signalling pathways
eLife 10:e70934.
https://doi.org/10.7554/eLife.70934

Share this article

https://doi.org/10.7554/eLife.70934

Further reading

    1. Developmental Biology
    2. Evolutionary Biology
    Zhuqing Wang, Yue Wang ... Wei Yan
    Research Article

    Despite rapid evolution across eutherian mammals, the X-linked MIR-506 family miRNAs are located in a region flanked by two highly conserved protein-coding genes (SLITRK2 and FMR1) on the X chromosome. Intriguingly, these miRNAs are predominantly expressed in the testis, suggesting a potential role in spermatogenesis and male fertility. Here, we report that the X-linked MIR-506 family miRNAs were derived from the MER91C DNA transposons. Selective inactivation of individual miRNAs or clusters caused no discernible defects, but simultaneous ablation of five clusters containing 19 members of the MIR-506 family led to reduced male fertility in mice. Despite normal sperm counts, motility, and morphology, the KO sperm were less competitive than wild-type sperm when subjected to a polyandrous mating scheme. Transcriptomic and bioinformatic analyses revealed that these X-linked MIR-506 family miRNAs, in addition to targeting a set of conserved genes, have more targets that are critical for spermatogenesis and embryonic development during evolution. Our data suggest that the MIR-506 family miRNAs function to enhance sperm competitiveness and reproductive fitness of the male by finetuning gene expression during spermatogenesis.

    1. Developmental Biology
    Edgar M Pera, Josefine Nilsson-De Moura ... Ivana Milas
    Research Article

    We previously showed that SerpinE2 and the serine protease HtrA1 modulate fibroblast growth factor (FGF) signaling in germ layer specification and head-to-tail development of Xenopus embryos. Here, we present an extracellular proteolytic mechanism involving this serpin-protease system in the developing neural crest (NC). Knockdown of SerpinE2 by injected antisense morpholino oligonucleotides did not affect the specification of NC progenitors but instead inhibited the migration of NC cells, causing defects in dorsal fin, melanocyte, and craniofacial cartilage formation. Similarly, overexpression of the HtrA1 protease impaired NC cell migration and the formation of NC-derived structures. The phenotype of SerpinE2 knockdown was overcome by concomitant downregulation of HtrA1, indicating that SerpinE2 stimulates NC migration by inhibiting endogenous HtrA1 activity. SerpinE2 binds to HtrA1, and the HtrA1 protease triggers degradation of the cell surface proteoglycan Syndecan-4 (Sdc4). Microinjection of Sdc4 mRNA partially rescued NC migration defects induced by both HtrA1 upregulation and SerpinE2 downregulation. These epistatic experiments suggest a proteolytic pathway by a double inhibition mechanism:

    SerpinE2 ┤HtrA1 protease ┤Syndecan-4 → NC cell migration.