Abstract

Stem cell homeostasis in plant shoot meristems requires tight coordiantion between stem cell proliferation and cell differentiation. In Arabidopsis, stem cells express the secreted dodecapeptide CLAVATA3 (CLV3), which signals through the leucine-rich repeat (LRR)-receptor kinase CLAVATA1 (CLV1) and related CLV1-family members to downregulate expression of the homeodomain transcription factor WUSCHEL (WUS). WUS protein moves from cells below the stem cell domain to the meristem tip and promotes stem cell identity, together with CLV3 expression, generating a negative feedback loop. How stem cell activity in the meristem centre is coordinated with organ initiation and cell differentiation at the periphery is unknown. We show here that the CLE40 gene, encoding a secreted peptide closely related to CLV3, is expressed in the SAM in differentiating cells in a pattern complementary to that of CLV3. CLE40 promotes WUS expression via BAM1, a CLV1-family receptor, and CLE40 expression is in turn repressed in a WUS-dependent manner. Together, CLE40-BAM1-WUS establish a second negative feedback loop. We propose that stem cell homeostasis is achieved through two intertwined pathways that adjust WUS activity and incorporate information on the size of the stem cell domain, via CLV3-CLV1, and on cell differentiation via CLE40-BAM1.

Data availability

Original microscopy and image analysis data represented in the manuscript is available via Dryad (https://doi.org/10.5061/dryad.1g1jwstwf), all other experimental replicates are available at BioImage Archive (S-BSST723).

The following data sets were generated

Article and author information

Author details

  1. Jenia Schlegel

    Heinrich-Heine University, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0434-4479
  2. Gregoire Denay

    Heinrich-Heine University, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8850-3029
  3. Rene H Wink

    Heinrich-Heine University, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Karine Gustavo Pinto

    Heinrich-Heine University, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Yvonne Stahl

    Heinrich-Heine University, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Julia Schmid

    Heinrich-Heine University, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Patrick Blümke

    Heinrich-Heine University, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7315-6792
  8. Rüdiger GW Simon

    Heinrich-Heine University, Düsseldorf, Germany
    For correspondence
    ruediger.simon@hhu.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1317-7716

Funding

Deutsche Forschungsgemeinschaft (iGRAD-PLANT,CEPLAS,SFB1208)

  • Gregoire Denay

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Schlegel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,546
    views
  • 897
    downloads
  • 58
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jenia Schlegel
  2. Gregoire Denay
  3. Rene H Wink
  4. Karine Gustavo Pinto
  5. Yvonne Stahl
  6. Julia Schmid
  7. Patrick Blümke
  8. Rüdiger GW Simon
(2021)
Control of Arabidopsis shoot stem cell homeostasis by two antagonistic CLE peptide signalling pathways
eLife 10:e70934.
https://doi.org/10.7554/eLife.70934

Share this article

https://doi.org/10.7554/eLife.70934

Further reading

    1. Developmental Biology
    Shannon H Carroll, Sogand Schafer ... Eric C Liao
    Research Article

    Wnt signaling plays crucial roles in embryonic patterning including the regulation of convergent extension (CE) during gastrulation, the establishment of the dorsal axis, and later, craniofacial morphogenesis. Further, Wnt signaling is a crucial regulator of craniofacial morphogenesis. The adapter proteins Dact1 and Dact2 modulate the Wnt signaling pathway through binding to Disheveled. However, the distinct relative functions of Dact1 and Dact2 during embryogenesis remain unclear. We found that dact1 and dact2 genes have dynamic spatiotemporal expression domains that are reciprocal to one another suggesting distinct functions during zebrafish embryogenesis. Both dact1 and dact2 contribute to axis extension, with compound mutants exhibiting a similar CE defect and craniofacial phenotype to the wnt11f2 mutant. Utilizing single-cell RNAseq and an established noncanonical Wnt pathway mutant with a shortened axis (gpc4), we identified dact1/2-specific roles during early development. Comparative whole transcriptome analysis between wildtype and gpc4 and wildtype and dact1/2 compound mutants revealed a novel role for dact1/2 in regulating the mRNA expression of the classical calpain capn8. Overexpression of capn8 phenocopies dact1/2 craniofacial dysmorphology. These results identify a previously unappreciated role of capn8 and calcium-dependent proteolysis during embryogenesis. Taken together, our findings highlight the distinct and overlapping roles of dact1 and dact2 in embryonic craniofacial development, providing new insights into the multifaceted regulation of Wnt signaling.

    1. Developmental Biology
    Dena Goldblatt, Basak Rosti ... David Schoppik
    Research Article

    Sensorimotor reflex circuits engage distinct neuronal subtypes, defined by precise connectivity, to transform sensation into compensatory behavior. Whether and how motor neuron populations specify the subtype fate and/or sensory connectivity of their pre-motor partners remains controversial. Here, we discovered that motor neurons are dispensable for proper connectivity in the vestibular reflex circuit that stabilizes gaze. We first measured activity following vestibular sensation in pre-motor projection neurons after constitutive loss of their extraocular motor neuron partners. We observed normal responses and topography indicative of unchanged functional connectivity between sensory neurons and projection neurons. Next, we show that projection neurons remain anatomically and molecularly poised to connect appropriately with their downstream partners. Lastly, we show that the transcriptional signatures that typify projection neurons develop independently of motor partners. Our findings comprehensively overturn a long-standing model: that connectivity in the circuit for gaze stabilization is retrogradely determined by motor partner-derived signals. By defining the contribution of motor neurons to specification of an archetypal sensorimotor circuit, our work speaks to comparable processes in the spinal cord and advances our understanding of principles of neural development.