Supracellular organization confers directionality and mechanical potency to migrating pairs of cardiopharyngeal progenitor cells

  1. Yelena Y Bernadskaya  Is a corresponding author
  2. Haicen Yue
  3. Calina Copos
  4. Lionel Christiaen  Is a corresponding author
  5. Alex Mogilner  Is a corresponding author
  1. New York University, United States
  2. University of North Carolina at Chapel Hill, United States

Abstract

Physiological and pathological morphogenetic events involve a wide array of collective movements, suggesting that multicellular arrangements confer biochemical and biomechanical properties contributing to tissue scale organization. The Ciona cardiopharyngeal progenitors provide the simplest model of collective cell migration, with cohesive bilateral cell pairs polarized along the leader-trailer migration path while moving between the ventral epidermis and trunk endoderm. We use the Cellular Potts Model to computationally probe the distributions of forces consistent with shapes and collective polarity of migrating cell pairs. Combining computational modeling, confocal microscopy, and molecular perturbations, we identify cardiopharyngeal progenitors as the simplest cell collective maintaining supracellular polarity with differential distributions of protrusive forces, cell-matrix adhesion, and myosin-based retraction forces along the leader-trailer axis. 4D simulations and experimental observations suggest that cell-cell communication helps establish a hierarchy to align collective polarity with the direction of migration, as observed with three or more cells in silico and in vivo. Our approach reveals emerging properties of the migrating collective: cell pairs are more persistent, migrating longer distances, and presumably with higher accuracy. Simulations suggest that cell pairs can overcome mechanical resistance of the trunk endoderm more effectively when they are polarized collectively. We propose that polarized supracellular organization of cardiopharyngeal progenitors confers emergent physical properties that determine mechanical interactions with their environment during morphogenesis.

Data availability

The code generated during this study is available on GitHub(https://github.com/HaicenYue/3D-simulation-of-TVCs.git)

The following data sets were generated
    1. Yue H
    (2021) 3D-simulation-of-TVCs
    Publicly available at Github (https://github.com).

Article and author information

Author details

  1. Yelena Y Bernadskaya

    Center for Developmental Genetics, Department of Biology, New York University, New York, United States
    For correspondence
    yb372@nyu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6147-5825
  2. Haicen Yue

    Courant Institute of Mathematical Sciences and Department of Biology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Calina Copos

    Mathematics and Computational Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Lionel Christiaen

    Center for Developmental Genetics, Department of Biology, New York University, New York, United States
    For correspondence
    lc121@nyu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5930-5667
  5. Alex Mogilner

    Courant Institute of Mathematical Sciences and Department of Biology, New York University, New York, United States
    For correspondence
    mogilner@cims.nyu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9310-3812

Funding

National Institute of General Medical Sciences (GM108369-01A1)

  • Yelena Y Bernadskaya

National Institute of General Medical Sciences (GM096032-09)

  • Lionel Christiaen

Division of Mathematical Sciences (DMS-1950981)

  • Alex Mogilner

U.S. Army (W911NF-17-1-041)

  • Alex Mogilner

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Bernadskaya et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,380
    views
  • 201
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yelena Y Bernadskaya
  2. Haicen Yue
  3. Calina Copos
  4. Lionel Christiaen
  5. Alex Mogilner
(2021)
Supracellular organization confers directionality and mechanical potency to migrating pairs of cardiopharyngeal progenitor cells
eLife 10:e70977.
https://doi.org/10.7554/eLife.70977

Share this article

https://doi.org/10.7554/eLife.70977

Further reading

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Priya M Christensen, Jonathan Martin ... Kelli L Palmer
    Research Article

    Bacterial membranes are complex and dynamic, arising from an array of evolutionary pressures. One enzyme that alters membrane compositions through covalent lipid modification is MprF. We recently identified that Streptococcus agalactiae MprF synthesizes lysyl-phosphatidylglycerol (Lys-PG) from anionic PG, and a novel cationic lipid, lysyl-glucosyl-diacylglycerol (Lys-Glc-DAG), from neutral glycolipid Glc-DAG. This unexpected result prompted us to investigate whether Lys-Glc-DAG occurs in other MprF-containing bacteria, and whether other novel MprF products exist. Here, we studied protein sequence features determining MprF substrate specificity. First, pairwise analyses identified several streptococcal MprFs synthesizing Lys-Glc-DAG. Second, a restricted Boltzmann machine-guided approach led us to discover an entirely new substrate for MprF in Enterococcus, diglucosyl-diacylglycerol (Glc2-DAG), and an expanded set of organisms that modify glycolipid substrates using MprF. Overall, we combined the wealth of available sequence data with machine learning to model evolutionary constraints on MprF sequences across the bacterial domain, thereby identifying a novel cationic lipid.

    1. Computational and Systems Biology
    2. Neuroscience
    Bernhard Englitz, Sahar Akram ... Shihab Shamma
    Research Article

    Perception can be highly dependent on stimulus context, but whether and how sensory areas encode the context remains uncertain. We used an ambiguous auditory stimulus – a tritone pair – to investigate the neural activity associated with a preceding contextual stimulus that strongly influenced the tritone pair’s perception: either as an ascending or a descending step in pitch. We recorded single-unit responses from a population of auditory cortical cells in awake ferrets listening to the tritone pairs preceded by the contextual stimulus. We find that the responses adapt locally to the contextual stimulus, consistent with human MEG recordings from the auditory cortex under the same conditions. Decoding the population responses demonstrates that cells responding to pitch-changes are able to predict well the context-sensitive percept of the tritone pairs. Conversely, decoding the individual pitch representations and taking their distance in the circular Shepard tone space predicts the opposite of the percept. The various percepts can be readily captured and explained by a neural model of cortical activity based on populations of adapting, pitch and pitch-direction cells, aligned with the neurophysiological responses. Together, these decoding and model results suggest that contextual influences on perception may well be already encoded at the level of the primary sensory cortices, reflecting basic neural response properties commonly found in these areas.