Differential adhesion regulates neurite placement via a retrograde zippering mechanism

  1. Titas Sengupta
  2. Noelle L Koonce
  3. Nabor Vázquez-Martínez
  4. Mark W Moyle
  5. Leighton H Duncan
  6. Sarah E Emerson
  7. Xiaofei Han
  8. Lin Shao
  9. Yicong Wu
  10. Anthony Santella
  11. Li Fan
  12. Zhirong Bao
  13. William Mohler
  14. Hari Shroff
  15. Daniel A Colón-Ramos  Is a corresponding author
  1. Yale University School of Medicine, United States
  2. National Institutes of Health, United States
  3. Sloan-Kettering Institute, United States
  4. Weill Cornell Medicine, United States
  5. University of Connecticut Health Center, United States

Abstract

During development, neurites and synapses segregate into specific neighborhoods or layers within nerve bundles. The developmental programs guiding placement of neurites in specific layers, and hence their incorporation into specific circuits, are not well understood. We implement novel imaging methods and quantitative models to document the embryonic development of the C. elegans brain neuropil, and discover that differential adhesion mechanisms control precise placement of single neurites onto specific layers. Differential adhesion is orchestrated via developmentally-regulated expression of the IgCAM SYG-1, and its partner ligand SYG-2. Changes in SYG-1 expression across neuropil layers result in changes in adhesive forces, which sort SYG-2-expressing neurons. Sorting to layers occurs, not via outgrowth from the neurite tip, but via an alternate mechanism of retrograde zippering, involving interactions between neurite shafts. Our study indicates that biophysical principles from differential adhesion govern neurite placement and synaptic specificity in vivo in developing neuropil bundles.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all plots in which individual data points are not represented - Figure 4N, Figure 6K, Figure 1-figure supplement 2I, Figure 1-figure supplement 2J, Figure 5-figure supplement 4N, Figure 6-figure supplement 1C, Figure 7-figure supplement 3N

Article and author information

Author details

  1. Titas Sengupta

    Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7228-719X
  2. Noelle L Koonce

    Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Nabor Vázquez-Martínez

    Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Mark W Moyle

    Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Leighton H Duncan

    Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Sarah E Emerson

    Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Xiaofei Han

    National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Lin Shao

    Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Yicong Wu

    National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Anthony Santella

    Developmental Biology Program, Molecular Cytology Core, Sloan-Kettering Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Li Fan

    Helen and Robert Appel Alzheimer's Disease Institute, Weill Cornell Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Zhirong Bao

    Developmental Biology Program, Sloan-Kettering Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2201-2745
  13. William Mohler

    Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Hari Shroff

    National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Daniel A Colón-Ramos

    Yale University School of Medicine, New Haven, United States
    For correspondence
    daniel.colon-ramos@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0223-7717

Funding

National Institutes of Health (R24-OD01647)

  • Zhirong Bao
  • William Mohler
  • Daniel A Colón-Ramos

National Institutes of Health (NIBIB Intramural Research Program)

  • Hari Shroff

National Institutes of Health (P30CA008748)

  • Zhirong Bao

National Institutes of Health (R01NS076558)

  • Daniel A Colón-Ramos

National Institutes of Health (DP1NS111778)

  • Daniel A Colón-Ramos

Howard Hughes Medical Institute (Faculty Scholar Award)

  • Daniel A Colón-Ramos

Marine Biological Laboratory (Whitman and Fellows program)

  • Hari Shroff
  • Daniel A Colón-Ramos

Gordon and Betty Moore Foundation (Moore Grant)

  • Hari Shroff
  • Daniel A Colón-Ramos

Gruber Foundation (Gruber Science Fellowship)

  • Titas Sengupta

National Institutes of Health (Predoctoral Training Program in Genetics NIH 2020 T32 GM.)

  • Noelle L Koonce

National Institutes of Health (F32-NS098616)

  • Mark W Moyle

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,830
    views
  • 276
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Titas Sengupta
  2. Noelle L Koonce
  3. Nabor Vázquez-Martínez
  4. Mark W Moyle
  5. Leighton H Duncan
  6. Sarah E Emerson
  7. Xiaofei Han
  8. Lin Shao
  9. Yicong Wu
  10. Anthony Santella
  11. Li Fan
  12. Zhirong Bao
  13. William Mohler
  14. Hari Shroff
  15. Daniel A Colón-Ramos
(2021)
Differential adhesion regulates neurite placement via a retrograde zippering mechanism
eLife 10:e71171.
https://doi.org/10.7554/eLife.71171

Share this article

https://doi.org/10.7554/eLife.71171

Further reading

    1. Developmental Biology
    Anastasiia Lozovska, Ana Casaca ... Moises Mallo
    Research Article

    During the trunk to tail transition the mammalian embryo builds the outlets for the intestinal and urogenital tracts, lays down the primordia for the hindlimb and external genitalia, and switches from the epiblast/primitive streak (PS) to the tail bud as the driver of axial extension. Genetic and molecular data indicate that Tgfbr1 is a key regulator of the trunk to tail transition. Tgfbr1 has been shown to control the switch of the neuromesodermal competent cells from the epiblast to the chordoneural hinge to generate the tail bud. We now show that in mouse embryos Tgfbr1 signaling also controls the remodeling of the lateral plate mesoderm (LPM) and of the embryonic endoderm associated with the trunk to tail transition. In the absence of Tgfbr1, the two LPM layers do not converge at the end of the trunk, extending instead as separate layers until the caudal embryonic extremity, and failing to activate markers of primordia for the hindlimb and external genitalia. The vascular remodeling involving the dorsal aorta and the umbilical artery leading to the connection between embryonic and extraembryonic circulation was also affected in the Tgfbr1 mutant embryos. Similar alterations in the LPM and vascular system were also observed in Isl1 null mutants, indicating that this factor acts in the regulatory cascade downstream of Tgfbr1 in LPM-derived tissues. In addition, in the absence of Tgfbr1 the embryonic endoderm fails to expand to form the endodermal cloaca and to extend posteriorly to generate the tail gut. We present evidence suggesting that the remodeling activity of Tgfbr1 in the LPM and endoderm results from the control of the posterior PS fate after its regression during the trunk to tail transition. Our data, together with previously reported observations, place Tgfbr1 at the top of the regulatory processes controlling the trunk to tail transition.

    1. Developmental Biology
    2. Neuroscience
    Odessa R Yabut, Jessica Arela ... Samuel J Pleasure
    Research Article

    Mutations in Sonic Hedgehog (SHH) signaling pathway genes, for example, Suppressor of Fused (SUFU), drive granule neuron precursors (GNP) to form medulloblastomas (MBSHH). However, how different molecular lesions in the Shh pathway drive transformation is frequently unclear, and SUFU mutations in the cerebellum seem distinct. In this study, we show that fibroblast growth factor 5 (FGF5) signaling is integral for many infantile MBSHH cases and that FGF5 expression is uniquely upregulated in infantile MBSHH tumors. Similarly, mice lacking SUFU (Sufu-cKO) ectopically express Fgf5 specifically along the secondary fissure where GNPs harbor preneoplastic lesions and show that FGFR signaling is also ectopically activated in this region. Treatment with an FGFR antagonist rescues the severe GNP hyperplasia and restores cerebellar architecture. Thus, direct inhibition of FGF signaling may be a promising and novel therapeutic candidate for infantile MBSHH.