Differential adhesion regulates neurite placement via a retrograde zippering mechanism

  1. Titas Sengupta
  2. Noelle L Koonce
  3. Nabor Vázquez-Martínez
  4. Mark W Moyle
  5. Leighton H Duncan
  6. Sarah E Emerson
  7. Xiaofei Han
  8. Lin Shao
  9. Yicong Wu
  10. Anthony Santella
  11. Li Fan
  12. Zhirong Bao
  13. William Mohler
  14. Hari Shroff
  15. Daniel A Colón-Ramos  Is a corresponding author
  1. Yale University School of Medicine, United States
  2. National Institutes of Health, United States
  3. Sloan-Kettering Institute, United States
  4. Weill Cornell Medicine, United States
  5. University of Connecticut Health Center, United States

Abstract

During development, neurites and synapses segregate into specific neighborhoods or layers within nerve bundles. The developmental programs guiding placement of neurites in specific layers, and hence their incorporation into specific circuits, are not well understood. We implement novel imaging methods and quantitative models to document the embryonic development of the C. elegans brain neuropil, and discover that differential adhesion mechanisms control precise placement of single neurites onto specific layers. Differential adhesion is orchestrated via developmentally-regulated expression of the IgCAM SYG-1, and its partner ligand SYG-2. Changes in SYG-1 expression across neuropil layers result in changes in adhesive forces, which sort SYG-2-expressing neurons. Sorting to layers occurs, not via outgrowth from the neurite tip, but via an alternate mechanism of retrograde zippering, involving interactions between neurite shafts. Our study indicates that biophysical principles from differential adhesion govern neurite placement and synaptic specificity in vivo in developing neuropil bundles.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all plots in which individual data points are not represented - Figure 4N, Figure 6K, Figure 1-figure supplement 2I, Figure 1-figure supplement 2J, Figure 5-figure supplement 4N, Figure 6-figure supplement 1C, Figure 7-figure supplement 3N

Article and author information

Author details

  1. Titas Sengupta

    Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7228-719X
  2. Noelle L Koonce

    Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Nabor Vázquez-Martínez

    Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Mark W Moyle

    Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Leighton H Duncan

    Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Sarah E Emerson

    Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Xiaofei Han

    National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Lin Shao

    Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Yicong Wu

    National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Anthony Santella

    Developmental Biology Program, Molecular Cytology Core, Sloan-Kettering Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Li Fan

    Helen and Robert Appel Alzheimer's Disease Institute, Weill Cornell Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Zhirong Bao

    Developmental Biology Program, Sloan-Kettering Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2201-2745
  13. William Mohler

    Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Hari Shroff

    National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Daniel A Colón-Ramos

    Yale University School of Medicine, New Haven, United States
    For correspondence
    daniel.colon-ramos@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0223-7717

Funding

National Institutes of Health (R24-OD01647)

  • Zhirong Bao
  • William Mohler
  • Daniel A Colón-Ramos

National Institutes of Health (NIBIB Intramural Research Program)

  • Hari Shroff

National Institutes of Health (P30CA008748)

  • Zhirong Bao

National Institutes of Health (R01NS076558)

  • Daniel A Colón-Ramos

National Institutes of Health (DP1NS111778)

  • Daniel A Colón-Ramos

Howard Hughes Medical Institute (Faculty Scholar Award)

  • Daniel A Colón-Ramos

Marine Biological Laboratory (Whitman and Fellows program)

  • Hari Shroff
  • Daniel A Colón-Ramos

Gordon and Betty Moore Foundation (Moore Grant)

  • Hari Shroff
  • Daniel A Colón-Ramos

Gruber Foundation (Gruber Science Fellowship)

  • Titas Sengupta

National Institutes of Health (Predoctoral Training Program in Genetics NIH 2020 T32 GM.)

  • Noelle L Koonce

National Institutes of Health (F32-NS098616)

  • Mark W Moyle

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Titas Sengupta
  2. Noelle L Koonce
  3. Nabor Vázquez-Martínez
  4. Mark W Moyle
  5. Leighton H Duncan
  6. Sarah E Emerson
  7. Xiaofei Han
  8. Lin Shao
  9. Yicong Wu
  10. Anthony Santella
  11. Li Fan
  12. Zhirong Bao
  13. William Mohler
  14. Hari Shroff
  15. Daniel A Colón-Ramos
(2021)
Differential adhesion regulates neurite placement via a retrograde zippering mechanism
eLife 10:e71171.
https://doi.org/10.7554/eLife.71171

Share this article

https://doi.org/10.7554/eLife.71171

Further reading

    1. Developmental Biology
    Bin Zhu, Rui Wei ... Pei Liang
    Research Article

    Wing dimorphism is a common phenomenon that plays key roles in the environmental adaptation of aphid; however, the signal transduction in response to environmental cues and the regulation mechanism related to this event remain unknown. Adenosine (A) to inosine (I) RNA editing is a post-transcriptional modification that extends transcriptome variety without altering the genome, playing essential roles in numerous biological and physiological processes. Here, we present a chromosome-level genome assembly of the rose-grain aphid Metopolophium dirhodum by using PacBio long HiFi reads and Hi-C technology. The final genome assembly for M. dirhodum is 447.8 Mb, with 98.50% of the assembled sequences anchored to nine chromosomes. The contig and scaffold N50 values are 7.82 and 37.54 Mb, respectively. A total of 18,003 protein-coding genes were predicted, of which 92.05% were functionally annotated. In addition, 11,678 A-to-I RNA-editing sites were systematically identified based on this assembled M. dirhodum genome, and two synonymous A-to-I RNA-editing sites on CYP18A1 were closely associated with transgenerational wing dimorphism induced by crowding. One of these A-to-I RNA-editing sites may prevent the binding of miR-3036-5p to CYP18A1, thus elevating CYP18A1 expression, decreasing 20E titer, and finally regulating the wing dimorphism of offspring. Meanwhile, crowding can also inhibit miR-3036-5p expression and further increase CYP18A1 abundance, resulting in winged offspring. These findings support that A-to-I RNA editing is a dynamic mechanism in the regulation of transgenerational wing dimorphism in aphids and would advance our understanding of the roles of RNA editing in environmental adaptability and phenotypic plasticity.

    1. Developmental Biology
    Hanee Lee, Junsu Kang ... Junho Lee
    Research Article

    The evolutionarily conserved Hippo (Hpo) pathway has been shown to impact early development and tumorigenesis by governing cell proliferation and apoptosis. However, its post-developmental roles are relatively unexplored. Here, we demonstrate its roles in post-mitotic cells by showing that defective Hpo signaling accelerates age-associated structural and functional decline of neurons in Caenorhabditis elegans. Loss of wts-1/LATS, the core kinase of the Hpo pathway, resulted in premature deformation of touch neurons and impaired touch responses in a yap-1/YAP-dependent manner, the downstream transcriptional co-activator of LATS. Decreased movement as well as microtubule destabilization by treatment with colchicine or disruption of microtubule-stabilizing genes alleviated the neuronal deformation of wts-1 mutants. Colchicine exerted neuroprotective effects even during normal aging. In addition, the deficiency of a microtubule-severing enzyme spas-1 also led to precocious structural deformation. These results consistently suggest that hyper-stabilized microtubules in both wts-1-deficient neurons and normally aged neurons are detrimental to the maintenance of neuronal structural integrity. In summary, Hpo pathway governs the structural and functional maintenance of differentiated neurons by modulating microtubule stability, raising the possibility that the microtubule stability of fully developed neurons could be a promising target to delay neuronal aging. Our study provides potential therapeutic approaches to combat age- or disease-related neurodegeneration.