Differential adhesion regulates neurite placement via a retrograde zippering mechanism

  1. Titas Sengupta
  2. Noelle L Koonce
  3. Nabor Vázquez-Martínez
  4. Mark W Moyle
  5. Leighton H Duncan
  6. Sarah E Emerson
  7. Xiaofei Han
  8. Lin Shao
  9. Yicong Wu
  10. Anthony Santella
  11. Li Fan
  12. Zhirong Bao
  13. William Mohler
  14. Hari Shroff
  15. Daniel A Colón-Ramos  Is a corresponding author
  1. Yale University School of Medicine, United States
  2. National Institutes of Health, United States
  3. Sloan-Kettering Institute, United States
  4. Weill Cornell Medicine, United States
  5. University of Connecticut Health Center, United States

Abstract

During development, neurites and synapses segregate into specific neighborhoods or layers within nerve bundles. The developmental programs guiding placement of neurites in specific layers, and hence their incorporation into specific circuits, are not well understood. We implement novel imaging methods and quantitative models to document the embryonic development of the C. elegans brain neuropil, and discover that differential adhesion mechanisms control precise placement of single neurites onto specific layers. Differential adhesion is orchestrated via developmentally-regulated expression of the IgCAM SYG-1, and its partner ligand SYG-2. Changes in SYG-1 expression across neuropil layers result in changes in adhesive forces, which sort SYG-2-expressing neurons. Sorting to layers occurs, not via outgrowth from the neurite tip, but via an alternate mechanism of retrograde zippering, involving interactions between neurite shafts. Our study indicates that biophysical principles from differential adhesion govern neurite placement and synaptic specificity in vivo in developing neuropil bundles.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all plots in which individual data points are not represented - Figure 4N, Figure 6K, Figure 1-figure supplement 2I, Figure 1-figure supplement 2J, Figure 5-figure supplement 4N, Figure 6-figure supplement 1C, Figure 7-figure supplement 3N

Article and author information

Author details

  1. Titas Sengupta

    Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7228-719X
  2. Noelle L Koonce

    Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Nabor Vázquez-Martínez

    Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Mark W Moyle

    Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Leighton H Duncan

    Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Sarah E Emerson

    Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Xiaofei Han

    National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Lin Shao

    Yale University School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Yicong Wu

    National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Anthony Santella

    Developmental Biology Program, Molecular Cytology Core, Sloan-Kettering Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Li Fan

    Helen and Robert Appel Alzheimer's Disease Institute, Weill Cornell Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Zhirong Bao

    Developmental Biology Program, Sloan-Kettering Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2201-2745
  13. William Mohler

    Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Hari Shroff

    National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Daniel A Colón-Ramos

    Yale University School of Medicine, New Haven, United States
    For correspondence
    daniel.colon-ramos@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0223-7717

Funding

National Institutes of Health (R24-OD01647)

  • Zhirong Bao
  • William Mohler
  • Daniel A Colón-Ramos

National Institutes of Health (NIBIB Intramural Research Program)

  • Hari Shroff

National Institutes of Health (P30CA008748)

  • Zhirong Bao

National Institutes of Health (R01NS076558)

  • Daniel A Colón-Ramos

National Institutes of Health (DP1NS111778)

  • Daniel A Colón-Ramos

Howard Hughes Medical Institute (Faculty Scholar Award)

  • Daniel A Colón-Ramos

Marine Biological Laboratory (Whitman and Fellows program)

  • Hari Shroff
  • Daniel A Colón-Ramos

Gordon and Betty Moore Foundation (Moore Grant)

  • Hari Shroff
  • Daniel A Colón-Ramos

Gruber Foundation (Gruber Science Fellowship)

  • Titas Sengupta

National Institutes of Health (Predoctoral Training Program in Genetics NIH 2020 T32 GM.)

  • Noelle L Koonce

National Institutes of Health (F32-NS098616)

  • Mark W Moyle

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Oliver Hobert, Howard Hughes Medical Institute, Columbia University, United States

Version history

  1. Received: June 11, 2021
  2. Accepted: November 15, 2021
  3. Accepted Manuscript published: November 16, 2021 (version 1)
  4. Version of Record published: February 10, 2022 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,701
    views
  • 267
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Titas Sengupta
  2. Noelle L Koonce
  3. Nabor Vázquez-Martínez
  4. Mark W Moyle
  5. Leighton H Duncan
  6. Sarah E Emerson
  7. Xiaofei Han
  8. Lin Shao
  9. Yicong Wu
  10. Anthony Santella
  11. Li Fan
  12. Zhirong Bao
  13. William Mohler
  14. Hari Shroff
  15. Daniel A Colón-Ramos
(2021)
Differential adhesion regulates neurite placement via a retrograde zippering mechanism
eLife 10:e71171.
https://doi.org/10.7554/eLife.71171

Share this article

https://doi.org/10.7554/eLife.71171

Further reading

    1. Developmental Biology
    Phuong-Khanh Nguyen, Louise Cheng
    Research Article

    The brain is consisted of diverse neurons arising from a limited number of neural stem cells. Drosophila neural stem cells called neuroblasts (NBs) produces specific neural lineages of various lineage sizes depending on their location in the brain. In the Drosophila visual processing centre - the optic lobes (OLs), medulla NBs derived from the neuroepithelium (NE) give rise to neurons and glia cells of the medulla cortex. The timing and the mechanisms responsible for the cessation of medulla NBs are so far not known. In this study, we show that the termination of medulla NBs during early pupal development is determined by the exhaustion of the NE stem cell pool. Hence, altering NE-NB transition during larval neurogenesis disrupts the timely termination of medulla NBs. Medulla NBs terminate neurogenesis via a combination of apoptosis, terminal symmetric division via Prospero, and a switch to gliogenesis via Glial Cell Missing (Gcm), however, these processes occur independently of each other. We also show that temporal progression of the medulla NBs is mostly not required for their termination. As the Drosophila OL shares a similar mode of division with mammalian neurogenesis, understanding when and how these progenitors cease proliferation during development can have important implications for mammalian brain size determination and regulation of its overall function.

    1. Developmental Biology
    Sanjay Kumar Sukumar, Vimala Antonydhason ... Ruth H Palmer
    Research Article

    Numerous roles for the Alk receptor tyrosine kinase have been described in Drosophila, including functions in the central nervous system (CNS), however the molecular details are poorly understood. To gain mechanistic insight, we employed Targeted DamID (TaDa) transcriptional profiling to identify targets of Alk signaling in the larval CNS. TaDa was employed in larval CNS tissues, while genetically manipulating Alk signaling output. The resulting TaDa data were analyzed together with larval CNS scRNA-seq datasets performed under similar conditions, identifying a role for Alk in the transcriptional regulation of neuroendocrine gene expression. Further integration with bulk and scRNA-seq datasets from larval brains in which Alk signaling was manipulated identified a previously uncharacterized Drosophila neuropeptide precursor encoded by CG4577 as an Alk signaling transcriptional target. CG4577, which we named Sparkly (Spar), is expressed in a subset of Alk-positive neuroendocrine cells in the developing larval CNS, including circadian clock neurons. In agreement with our TaDa analysis, overexpression of the Drosophila Alk ligand Jeb resulted in increased levels of Spar protein in the larval CNS. We show that Spar protein is expressed in circadian (clock) neurons, and flies lacking Spar exhibit defects in sleep and circadian activity control. In summary, we report a novel activity regulating neuropeptide precursor gene that is regulated by Alk signaling in the Drosophila CNS.