Nuclear NAD+-biosynthetic enzyme NMNAT1 facilitates development and early survival of retinal neurons

Abstract

Despite mounting evidence that the mammalian retina is exceptionally reliant on proper NAD+ homeostasis for health and function, the specific roles of subcellular NAD+ pools in retinal development, maintenance, and disease remain obscure. Here, we show that deletion of the nuclear-localized NAD+ synthase nicotinamide mononucleotide adenylyltransferase-1 (NMNAT1) in the developing murine retina causes early and severe degeneration of photoreceptors and select inner retinal neurons via multiple distinct cell death pathways. This severe phenotype is associated with disruptions to retinal central carbon metabolism, purine nucleotide synthesis, and amino acid pathways. Furthermore, transcriptomic and immunostaining approaches reveal dysregulation of a collection of photoreceptor and synapse-specific genes in NMNAT1 knockout retinas prior to detectable morphological or metabolic alterations. Collectively, our study reveals previously unrecognized complexity in NMNAT1-associated retinal degeneration and suggests a yet-undescribed role for NMNAT1 in gene regulation during photoreceptor terminal differentiation.

Data availability

Sequencing data have been deposited in GEO under accession code GSE178312. All other data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all figures.

The following data sets were generated

Article and author information

Author details

  1. David Sokolov

    Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Emily R Sechrest

    Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yekai Wang

    Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Connor Nevin

    Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jianhai Du

    Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Saravanan Kolandaivelu

    Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, United States
    For correspondence
    kolandaivelus@hsc.wvu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8552-7850

Funding

West Virginia University (Bridge Funding)

  • Saravanan Kolandaivelu

National Institutes of Health (RO1EY028959)

  • Saravanan Kolandaivelu

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols of West Virginia University. The protocol was approved by the Institutional Animal Care and Use Committee of West Virginia University (Protocol #1603001820).

Copyright

© 2021, Sokolov et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,091
    views
  • 239
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David Sokolov
  2. Emily R Sechrest
  3. Yekai Wang
  4. Connor Nevin
  5. Jianhai Du
  6. Saravanan Kolandaivelu
(2021)
Nuclear NAD+-biosynthetic enzyme NMNAT1 facilitates development and early survival of retinal neurons
eLife 10:e71185.
https://doi.org/10.7554/eLife.71185

Share this article

https://doi.org/10.7554/eLife.71185

Further reading

    1. Developmental Biology
    Yanlin Hou, Zhengwen Nie ... Hans R Scholer
    Research Article

    During the first lineage segregation, mammalian embryos generate the inner cell mass (ICM) and trophectoderm (TE). ICM gives rise to the epiblast (EPI) that forms all cell types of the body, an ability referred to as pluripotency. The molecular mechanisms that induce pluripotency in embryos remain incompletely elucidated. Using knockout (KO) mouse models in conjunction with low-input ATAC-seq and RNA-seq, we found that Oct4 and Sox2 gradually come into play in the early ICM, coinciding with the initiation of Sox2 expression. Oct4 and Sox2 activate the pluripotency-related genes through the putative OCT-SOX enhancers in the early ICM. Furthermore, we observed a substantial reorganization of chromatin landscape and transcriptome from the morula to the early ICM stages, which was partially driven by Oct4 and Sox2, highlighting their pivotal role in promoting the developmental trajectory toward the ICM. Our study provides new insights into the establishment of the pluripotency network in mouse preimplantation embryos.

    1. Developmental Biology
    2. Neuroscience
    Maria I Lazaro-Pena, Carlos A Diaz-Balzac
    Insight

    The ligand Netrin mediates axon guidance through a combination of haptotaxis over short distances and chemotaxis over longer distances.