Analysis of the Mechanosensor Channel Functionality of TACAN

  1. Yiming Niu
  2. Xiao Tao
  3. George Vaisey
  4. Paul D B Olinares
  5. Hanan Alwaseem
  6. Brian Chait
  7. Roderick MacKinnon  Is a corresponding author
  1. Howard Hughes Medical Institute, The Rockefeller University, United States
  2. Rockefeller University, United States
  3. The Rockefeller University, United States

Abstract

Mechanosensitive ion channels mediate transmembrane ion currents activated by mechanical forces. A mechanosensitive ion channel called TACAN was recently reported. We began to study TACAN with the intent to understand how it senses mechanical forces and functions as an ion channel. Using cellular patch-recording methods we failed to identify mechanosensitive ion channel activity. Using membrane reconstitution methods we found that TACAN, at high protein concentrations, produces heterogeneous conduction levels that are not mechanosensitive and are most consistent with disruptions of the lipid bilayer. We determined the structure of TACAN using single particle cryo-EM and observe that it forms a symmetrical dimeric transmembrane protein. Each protomer contains an intracellular-facing cleft with a coenzyme-A cofactor, confirmed by mass spectrometry. The TACAN protomers are related in 3-dimensional structure to a fatty acid elongase, ELOVL. Whilst its physiological function remains unclear, we anticipate that TACAN is not a mechanosensitive ion channel.

Data availability

The B-factor sharpened 3D cryo-EM density map and atomic coordinates of wild-type TACAN have been deposited in Worldwide Protein Data Bank (wwPDB) under accession codes 7N0K and EMD-24107.The B-factor sharpened 3D cryo-EM density map and atomic coordinates of His196Ala, His197Ala mutant TACAN have been deposited in Worldwide Protein Data Bank (wwPDB) under accession codes 7N0L and EMD-24108.

The following data sets were generated

Article and author information

Author details

  1. Yiming Niu

    Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5683-1781
  2. Xiao Tao

    Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9381-7903
  3. George Vaisey

    Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Paul D B Olinares

    Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3429-6618
  5. Hanan Alwaseem

    Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Brian Chait

    Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Roderick MacKinnon

    Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
    For correspondence
    mackinn@mail.rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7605-4679

Funding

National Institutes of Health (GM43949)

  • Roderick MacKinnon

National Institutes of Health (GM109824)

  • Brian Chait

National Institutes of Health (GM103314)

  • Brian Chait

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Niu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,581
    views
  • 364
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yiming Niu
  2. Xiao Tao
  3. George Vaisey
  4. Paul D B Olinares
  5. Hanan Alwaseem
  6. Brian Chait
  7. Roderick MacKinnon
(2021)
Analysis of the Mechanosensor Channel Functionality of TACAN
eLife 10:e71188.
https://doi.org/10.7554/eLife.71188

Share this article

https://doi.org/10.7554/eLife.71188

Further reading

    1. Structural Biology and Molecular Biophysics
    James Lincoff, Cole VM Helsell ... Michael Grabe
    Research Article Updated

    The M2 proton channel aids in the exit of mature influenza viral particles from the host plasma membrane through its ability to stabilize regions of high negative Gaussian curvature (NGC) that occur at the neck of budding virions. The channels are homo-tetramers that contain a cytoplasm-facing amphipathic helix (AH) that is necessary and sufficient for NGC generation; however, constructs containing the transmembrane spanning helix, which facilitates tetramerization, exhibit enhanced curvature generation. Here, we used all-atom molecular dynamics (MD) simulations to explore the conformational dynamics of M2 channels in lipid bilayers revealing that the AH is dynamic, quickly breaking the fourfold symmetry observed in most structures. Next, we carried out MD simulations with the protein restrained in four- and twofold symmetric conformations to determine the impact on the membrane shape. While each pattern was distinct, all configurations induced pronounced curvature in the outer leaflet, while conversely, the inner leaflets showed minimal curvature and significant lipid tilt around the AHs. The MD-generated profiles at the protein–membrane interface were then extracted and used as boundary conditions in a continuum elastic membrane model to calculate the membrane-bending energy of each conformation embedded in different membrane surfaces characteristic of a budding virus. The calculations show that all three M2 conformations are stabilized in inward-budding, concave spherical caps and destabilized in outward-budding, convex spherical caps, the latter reminiscent of a budding virus. One of the C2-broken symmetry conformations is stabilized by 4 kT in NGC surfaces with the minimum energy conformation occurring at a curvature corresponding to 33 nm radii. In total, our work provides atomistic insight into the curvature sensing capabilities of M2 channels and how enrichment in the nascent viral particle depends on protein shape and membrane geometry.

    1. Structural Biology and Molecular Biophysics
    Xinyu Gu, Akashnathan Aranganathan, Pratyush Tiwary
    Research Article

    Small-molecule drug design hinges on obtaining co-crystallized ligand-protein structures. Despite AlphaFold2’s strides in protein native structure prediction, its focus on apo structures overlooks ligands and associated holo structures. Moreover, designing selective drugs often benefits from the targeting of diverse metastable conformations. Therefore, direct application of AlphaFold2 models in virtual screening and drug discovery remains tentative. Here, we demonstrate an AlphaFold2-based framework combined with all-atom enhanced sampling molecular dynamics and Induced Fit docking, named AF2RAVE-Glide, to conduct computational model-based small-molecule binding of metastable protein kinase conformations, initiated from protein sequences. We demonstrate the AF2RAVE-Glide workflow on three different mammalian protein kinases and their type I and II inhibitors, with special emphasis on binding of known type II kinase inhibitors which target the metastable classical DFG-out state. These states are not easy to sample from AlphaFold2. Here, we demonstrate how with AF2RAVE these metastable conformations can be sampled for different kinases with high enough accuracy to enable subsequent docking of known type II kinase inhibitors with more than 50% success rates across docking calculations. We believe the protocol should be deployable for other kinases and more proteins generally.