β-Catenin-NFkB-CFTR interactions in cholangiocytes regulate inflammation and fibrosis during ductular reaction

Abstract

Expansion of biliary epithelial cells (BECs) during ductular reaction (DR) is observed in liver diseases including cystic fibrosis (CF), and associated with inflammation and fibrosis, albeit without complete understanding of underlying mechanism. Using two different genetic mouse knockouts of b-catenin, one with b-catenin loss is hepatocytes and BECs (KO1), and another with loss in only hepatocytes (KO2), we demonstrate disparate long-term repair after an initial injury by 2-week choline-deficient ethionine-supplemented diet. KO2 show gradual liver repopulation with BEC-derived b-catenin-positive hepatocytes, and resolution of injury. KO1 showed persistent loss of b-catenin, NF-kB activation in BECs, progressive DR and fibrosis, reminiscent of CF histology. We identify interactions of b-catenin, NFkB and CF transmembranous conductance regulator (CFTR) in BECs. Loss of CFTR or b-catenin led to NF-kB activation, DR and inflammation. Thus, we report a novel b-catenin-NFkB-CFTR interactome in BECs, and its disruption may contribute to hepatic pathology of CF.

Data availability

Raw RNA-seq data and gene count quantification were submitted to NCBI GEO data base with accession ID GSE155981

The following data sets were generated

Article and author information

Author details

  1. Shikai Hu

    Tsinghua University, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Jacquelyn O Russell

    Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Silvia Liu

    University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Catherine Cao

    University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jackson McGaughey

    University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Ravi Rai

    University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Karis Kosar

    University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Junyan Tao

    University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Edward Hurley

    University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Minakshi Poddar

    University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Sucha Singh

    University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Aaron Bell

    University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Donghun Shin

    University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7975-9014
  14. Reben Raeman

    University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Aatur D Singhi

    University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Kari Nejak-Bowen

    University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Sungjin Ko

    University of Pittsburgh, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Satdarshan P Monga

    University of Pittsburgh, Pittsburgh, United States
    For correspondence
    smonga@pitt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8437-3378

Funding

National Institutes of Health (1R01DK62277,1R01DK100287,1R01DK116993,R01CA204586,1R01CA251155-01)

  • Satdarshan P Monga

National Institutes of Health (1R01CA258449)

  • Sungjin Ko

National Institutes of Health (T32EB0010216,1F31DK115017)

  • Jacquelyn O Russell

National Institutes of Health (P30DK120531)

  • Satdarshan P Monga

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Paul W Noble, Cedars-Sinai Medical Centre, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animals were handled according to approved institutional animal care and use committee (IACUC) Protocol #: 19126451 of the University of Pittsburgh.

Human subjects: The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Institutional Review Board of the University of Pittsburgh (STUDY19070068, STUDY20010114, and STUDY20040276 on 3/23/2021).

Version history

  1. Received: June 16, 2021
  2. Preprint posted: September 17, 2021 (view preprint)
  3. Accepted: October 1, 2021
  4. Accepted Manuscript published: October 5, 2021 (version 1)
  5. Version of Record published: October 29, 2021 (version 2)
  6. Version of Record updated: November 1, 2021 (version 3)

Copyright

© 2021, Hu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,550
    views
  • 248
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shikai Hu
  2. Jacquelyn O Russell
  3. Silvia Liu
  4. Catherine Cao
  5. Jackson McGaughey
  6. Ravi Rai
  7. Karis Kosar
  8. Junyan Tao
  9. Edward Hurley
  10. Minakshi Poddar
  11. Sucha Singh
  12. Aaron Bell
  13. Donghun Shin
  14. Reben Raeman
  15. Aatur D Singhi
  16. Kari Nejak-Bowen
  17. Sungjin Ko
  18. Satdarshan P Monga
(2021)
β-Catenin-NFkB-CFTR interactions in cholangiocytes regulate inflammation and fibrosis during ductular reaction
eLife 10:e71310.
https://doi.org/10.7554/eLife.71310

Share this article

https://doi.org/10.7554/eLife.71310

Further reading

    1. Developmental Biology
    2. Medicine
    Stephen E Flaherty III, Olivier Bezy ... Zhidan Wu
    Research Article

    From a forward mutagenetic screen to discover mutations associated with obesity, we identified mutations in the Spag7 gene linked to metabolic dysfunction in mice. Here, we show that SPAG7 KO mice are born smaller and develop obesity and glucose intolerance in adulthood. This obesity does not stem from hyperphagia, but a decrease in energy expenditure. The KO animals also display reduced exercise tolerance and muscle function due to impaired mitochondrial function. Furthermore, SPAG7-deficiency in developing embryos leads to intrauterine growth restriction, brought on by placental insufficiency, likely due to abnormal development of the placental junctional zone. This insufficiency leads to loss of SPAG7-deficient fetuses in utero and reduced birth weights of those that survive. We hypothesize that a ‘thrifty phenotype’ is ingrained in SPAG7 KO animals during development that leads to adult obesity. Collectively, these results indicate that SPAG7 is essential for embryonic development and energy homeostasis later in life.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Nikola Sekulovski, Jenna C Wettstein ... Kenichiro Taniguchi
    Research Article

    Amniogenesis, a process critical for continuation of healthy pregnancy, is triggered in a collection of pluripotent epiblast cells as the human embryo implants. Previous studies have established that bone morphogenetic protein (BMP) signaling is a major driver of this lineage specifying process, but the downstream BMP-dependent transcriptional networks that lead to successful amniogenesis remain to be identified. This is, in part, due to the current lack of a robust and reproducible model system that enables mechanistic investigations exclusively into amniogenesis. Here, we developed an improved model of early amnion specification, using a human pluripotent stem cell-based platform in which the activation of BMP signaling is controlled and synchronous. Uniform amniogenesis is seen within 48 hr after BMP activation, and the resulting cells share transcriptomic characteristics with amnion cells of a gastrulating human embryo. Using detailed time-course transcriptomic analyses, we established a previously uncharacterized BMP-dependent amniotic transcriptional cascade, and identified markers that represent five distinct stages of amnion fate specification; the expression of selected markers was validated in early post-implantation macaque embryos. Moreover, a cohort of factors that could potentially control specific stages of amniogenesis was identified, including the transcription factor TFAP2A. Functionally, we determined that, once amniogenesis is triggered by the BMP pathway, TFAP2A controls the progression of amniogenesis. This work presents a temporally resolved transcriptomic resource for several previously uncharacterized amniogenesis states and demonstrates a critical intermediate role for TFAP2A during amnion fate specification.