Circadian oscillations in Trichoderma atroviride and the role of core clock components in secondary metabolism, development, and mycoparasitism against the phytopathogen Botrytis cinerea

  1. Marlene Henríquez-Urrutia
  2. Rebecca Spanner
  3. Consuelo Olivares-Yánez
  4. Aldo Seguel-Avello
  5. Rodrigo Pérez-Lara
  6. Hector Guillén-Alonso
  7. Robert Winkler
  8. Alfredo Heriberto Herrera-Estrella
  9. Paulo Canessa  Is a corresponding author
  10. Luis F Larrondo  Is a corresponding author
  1. Pontificia Universidad Católica de Chile, Chile
  2. Millennium Institute for Integrative Biology, Chile
  3. Cinvestav Unidad Irapuato, Mexico
  4. Unidad de Genómica Avanzada - Langebio, Mexico
  5. Universidad Andrés Bello, Chile

Abstract

Circadian clocks are important for an individual’s fitness, and recent studies have underlined their role in the outcome of biological interactions. However, the relevance of circadian clocks in fungal-fungal interactions remains largely unexplored. We sought to characterize a functional clock in the biocontrol agent Trichoderma atroviride to assess its importance in the mycoparasitic interaction against the phytopathogen Botrytis cinerea. By utilizing luciferase reporters to monitor the T. atroviride core-clock, we confirmed the existence of circadian oscillations of ~26h that are temperature-compensated and modulated by environmental cues such as light and temperature. Notably, the presence of such rhythms appears to be highly dependent on the nutritional composition of the media. Heterologous expression of the T. atroviride negative clock component (tafrq) in a clock null (Δfrq) strain of Neurospora crassa restored core clock function in the latter fungus, with the same period observed in T. atroviride, confirming the role of tafrq as a bona fide core-clock component. Confrontation assays between wild-type and clock mutant strains of T. atroviride and B. cinerea, in constant light or darkness, revealed an inhibitory effect of light on T. atroviride's mycoparasitic capabilities. Interestingly, when confrontation assays were performed under light/dark cycles, T. atroviride's overgrowth capacity was enhanced when inoculations were at dawn compared to dusk. Deleting the core-clock negative element FRQ in B. cinerea, but not in T. atroviride, was vital for the daily differential phenotype, suggesting that the B. cinerea clock has a more significant influence on the result of this interaction. Additionally, we observed that T. atroviride clock components modulate development and secondary metabolism in this fungus, affecting the production of several molecules, including volatile compounds, such as 6-pentyl-α-pyrone (6-PP). Notably, we detected the rhythmic production of distinct T. atroviride volatile organic compounds (VOCs), which depended on its circadian clock. Thus, this study provides evidence on how clock components impact diverse aspects of T. atroviride lifestyle and how daily changes modulate fungal interactions and dynamics.

Data availability

All data generated and analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1 and 2 and Table 1.

Article and author information

Author details

  1. Marlene Henríquez-Urrutia

    Molecular Genetics and Microbiology department, Pontificia Universidad Católica de Chile, Santiago, Chile
    Competing interests
    No competing interests declared.
  2. Rebecca Spanner

    Molecular Genetics and Microbiology department, Pontificia Universidad Católica de Chile, Santiago, Chile
    Competing interests
    No competing interests declared.
  3. Consuelo Olivares-Yánez

    Millennium Science Initiative Program, Millennium Institute for Integrative Biology, Santiago, Chile
    Competing interests
    No competing interests declared.
  4. Aldo Seguel-Avello

    Molecular Genetics and Microbiology department, Pontificia Universidad Católica de Chile, Santiago, Chile
    Competing interests
    No competing interests declared.
  5. Rodrigo Pérez-Lara

    Molecular Genetics and Microbiology department, Pontificia Universidad Católica de Chile, Santiago, Chile
    Competing interests
    No competing interests declared.
  6. Hector Guillén-Alonso

    Department of Biotechnology and Biochemistry, Cinvestav Unidad Irapuato, Irapuato, Mexico
    Competing interests
    No competing interests declared.
  7. Robert Winkler

    Department of Biotechnology and Biochemistry, Cinvestav Unidad Irapuato, Irapuato, Mexico
    Competing interests
    No competing interests declared.
  8. Alfredo Heriberto Herrera-Estrella

    Laboratorio de expresión génica y desarrollo en hongos, Unidad de Genómica Avanzada - Langebio, Irapuato, Mexico
    Competing interests
    No competing interests declared.
  9. Paulo Canessa

    Centro de Biotecnología Vegetal, Universidad Andrés Bello, Santiago, Chile
    For correspondence
    paulo.canessa@unab.cl
    Competing interests
    No competing interests declared.
  10. Luis F Larrondo

    Molecular Genetics and Microbiology department, Pontificia Universidad Católica de Chile, Santiago, Chile
    For correspondence
    llarrondo@bio.puc.cl
    Competing interests
    Luis F Larrondo, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8832-7109

Funding

Agencia Nacional de Investigación y Desarrollo (FONDECYT Regular 1211715)

  • Luis F Larrondo

Agencia Nacional de Investigación y Desarrollo (FONDECYT Postdoc 3180328)

  • Aldo Seguel-Avello

Agencia Nacional de Investigación y Desarrollo (FONDECYT Postdoc 3190628)

  • Consuelo Olivares-Yánez

Howard Hughes Medical Institute (the International Research Scholar program)

  • Luis F Larrondo

Agencia Nacional de Investigación y Desarrollo (Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio ICN17_022)

  • Paulo Canessa
  • Luis F Larrondo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Antonis Rokas, Vanderbilt University, United States

Version history

  1. Received: June 17, 2021
  2. Accepted: August 10, 2022
  3. Accepted Manuscript published: August 11, 2022 (version 1)
  4. Version of Record published: August 30, 2022 (version 2)

Copyright

© 2022, Henríquez-Urrutia et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,255
    views
  • 338
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marlene Henríquez-Urrutia
  2. Rebecca Spanner
  3. Consuelo Olivares-Yánez
  4. Aldo Seguel-Avello
  5. Rodrigo Pérez-Lara
  6. Hector Guillén-Alonso
  7. Robert Winkler
  8. Alfredo Heriberto Herrera-Estrella
  9. Paulo Canessa
  10. Luis F Larrondo
(2022)
Circadian oscillations in Trichoderma atroviride and the role of core clock components in secondary metabolism, development, and mycoparasitism against the phytopathogen Botrytis cinerea
eLife 11:e71358.
https://doi.org/10.7554/eLife.71358

Share this article

https://doi.org/10.7554/eLife.71358

Further reading

    1. Cell Biology
    Mathieu C Husser, Nhat P Pham ... Alisa Piekny
    Tools and Resources

    Endogenous tags have become invaluable tools to visualize and study native proteins in live cells. However, generating human cell lines carrying endogenous tags is difficult due to the low efficiency of homology-directed repair. Recently, an engineered split mNeonGreen protein was used to generate a large-scale endogenous tag library in HEK293 cells. Using split mNeonGreen for large-scale endogenous tagging in human iPSCs would open the door to studying protein function in healthy cells and across differentiated cell types. We engineered an iPS cell line to express the large fragment of the split mNeonGreen protein (mNG21-10) and showed that it enables fast and efficient endogenous tagging of proteins with the short fragment (mNG211). We also demonstrate that neural network-based image restoration enables live imaging studies of highly dynamic cellular processes such as cytokinesis in iPSCs. This work represents the first step towards a genome-wide endogenous tag library in human stem cells.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.