3D virtual histopathology of cardiac tissue from Covid-19 patients based on phase-contrast X-ray tomography

  1. Marius Reichardt
  2. Patrick Moller Jensen
  3. Vedrana Andersen Dahl
  4. Anders Bjorholm Dahl
  5. Maximilian Ackermann
  6. Harshit Shah
  7. Florian Länger
  8. Christopher Werlein
  9. Mark P Kuehnel
  10. Danny Jonigk  Is a corresponding author
  11. Tim Salditt  Is a corresponding author
  1. Georg-August-Universität Göttingen, Germany
  2. Technical University of Denmark, Denmark
  3. University Medical Center of the Johannes Gutenberg University Mainz, Germany
  4. Medical University Hannover, Germany

Abstract

We have used phase-contrast X-ray tomography to characterize the three-dimensional (3d) structure of cardiac tissue from patients who succumbed to Covid-19. By extending conventional histopathological examination by a third dimension, the delicate pathological changes of the vascular system of severe Covid-19 progressions can be analyzed, fully quantified and compared to other types of viral myocarditis and controls. To this end, cardiac samples with a cross section of 3:5mm were scanned at a laboratory setup as well as at a parallel beam setup at a synchrotron radiation facility. The vascular network was segmented by a deep learning architecture suitable for 3d datasets (V-net), trained by sparse manual annotations. Pathological alterations of vessels, concerning the variation of diameters and the amount of small holes, were observed, indicative of elevated occurrence of intussusceptive angiogenesis, also confirmed by high resolution cone beam X-ray tomography and scanning electron microscopy. Furthermore, we implemented a fully automated analysis of the tissue structure in form of shape measures based on the structure tensor. The corresponding distributions show that the histopathology of Covid-19 differs from both influenza and typical coxsackie virus myocarditis.

Data availability

The tomographic datasets recorded in WG configuration as well as the PB datasets used for the segmentation of the vascular system and the respective laboratory datasets were uploaded to https://doi.org/10.5281/zenodo.4905971.Additional data (raw data, PB and laboratory reconstructions, structure tensor analysis) is curated here at University ofGöttingen and at DESY can be obtained upon request from the corresponding author (tsaldit@gwdg.de); due to the extremely large size >15TB it cannot presently be uploaded easily to a public repository.The implementation of the structure tensor analysis is provided in https://lab.compute.dtu.dk/patmjen/structure-tensor.The neural network code used for the segmentation of the vasculature was uploaded to GitHub (github.com/patmjen/blood-vessel-segmentation)

The following data sets were generated

Article and author information

Author details

  1. Marius Reichardt

    Institut für Röntgenphysik, Georg-August-Universität Göttingen, Göttingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Patrick Moller Jensen

    Technical University of Denmark, Kopenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Vedrana Andersen Dahl

    Technical University of Denmark, Kopenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  4. Anders Bjorholm Dahl

    Technical University of Denmark, Kopenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  5. Maximilian Ackermann

    Institute of Anatomy and Cell Biology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9996-2477
  6. Harshit Shah

    Medical University Hannover, Hannover, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Florian Länger

    Medical University Hannover, Hannover, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Christopher Werlein

    Medical University Hannover, Hannover, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Mark P Kuehnel

    Medical University Hannover, Hannover, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Danny Jonigk

    Medical University Hannover, Hannover, Germany
    For correspondence
    Jonigk.Danny@mh-hannover.de
    Competing interests
    The authors declare that no competing interests exist.
  11. Tim Salditt

    Institut für Röntgenphysik, Georg-August-Universität Göttingen, Göttingen, Germany
    For correspondence
    tsaldit@gwdg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4636-0813

Funding

Bundesministerium für Bildung und Forschung (Max Planck School Matter to Life)

  • Marius Reichardt
  • Tim Salditt

Bundesministerium für Bildung und Forschung (05K19MG2)

  • Tim Salditt

Deutsche Forschungsgemeinschaft (EXC 2067/1-390729940)

  • Tim Salditt

H2020 European Research Council (XHale,771883)

  • Danny Jonigk

Deutsche Forschungsgemeinschaft (KFO311 (project Z2))

  • Danny Jonigk

Hanseatic League of Science

  • Patrick Moller Jensen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Formalin-fixed paraffin-embedded tissue blocks of control hearts, influenza and coxsackie virus myocarditis hearts were retrieved from archived material from the Institute of Pathology at Hannover Medical School in accordance with the local ethics committee (ethics vote number: 1741-2013 and 2893-2015). Formalin-fixed paraffin-embedded tissue blocks of COVID-19 autopsy cases were retrieved after written consent in accordance with the local ethics committee at Hannover medical school (ethics vote number: 9022 BO K 2020)

Copyright

© 2021, Reichardt et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,241
    views
  • 626
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marius Reichardt
  2. Patrick Moller Jensen
  3. Vedrana Andersen Dahl
  4. Anders Bjorholm Dahl
  5. Maximilian Ackermann
  6. Harshit Shah
  7. Florian Länger
  8. Christopher Werlein
  9. Mark P Kuehnel
  10. Danny Jonigk
  11. Tim Salditt
(2021)
3D virtual histopathology of cardiac tissue from Covid-19 patients based on phase-contrast X-ray tomography
eLife 10:e71359.
https://doi.org/10.7554/eLife.71359

Share this article

https://doi.org/10.7554/eLife.71359

Further reading

    1. Epidemiology and Global Health
    2. Genetics and Genomics
    Tianyu Zhao, Hui Li ... Li Chen
    Research Article

    Alzheimer’s disease (AD) is a complex degenerative disease of the central nervous system, and elucidating its pathogenesis remains challenging. In this study, we used the inverse-variance weighted (IVW) model as the major analysis method to perform hypothesis-free Mendelian randomization (MR) analysis on the data from MRC IEU OpenGWAS (18,097 exposure traits and 16 AD outcome traits), and conducted sensitivity analysis with six models, to assess the robustness of the IVW results, to identify various classes of risk or protective factors for AD, early-onset AD, and late-onset AD. We generated 400,274 data entries in total, among which the major analysis method of the IVW model consists of 73,129 records with 4840 exposure traits, which fall into 10 categories: Disease, Medical laboratory science, Imaging, Anthropometric, Treatment, Molecular trait, Gut microbiota, Past history, Family history, and Lifestyle trait. More importantly, a freely accessed online platform called MRAD (https://gwasmrad.com/mrad/) has been developed using the Shiny package with MR analysis results. Additionally, novel potential AD therapeutic targets (CD33, TBCA, VPS29, GNAI3, PSME1) are identified, among which CD33 was positively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. TBCA and VPS29 were negatively associated with the main outcome traits of AD, as well as with both EOAD and LOAD. GNAI3 and PSME1 were negatively associated with the main outcome traits of AD, as well as with LOAD, but had no significant causal association with EOAD. The findings of our research advance our understanding of the etiology of AD.

    1. Epidemiology and Global Health
    Xiaoning Wang, Jinxiang Zhao ... Dong Liu
    Research Article

    Artificially sweetened beverages containing noncaloric monosaccharides were suggested as healthier alternatives to sugar-sweetened beverages. Nevertheless, the potential detrimental effects of these noncaloric monosaccharides on blood vessel function remain inadequately understood. We have established a zebrafish model that exhibits significant excessive angiogenesis induced by high glucose, resembling the hyperangiogenic characteristics observed in proliferative diabetic retinopathy (PDR). Utilizing this model, we observed that glucose and noncaloric monosaccharides could induce excessive formation of blood vessels, especially intersegmental vessels (ISVs). The excessively branched vessels were observed to be formed by ectopic activation of quiescent endothelial cells (ECs) into tip cells. Single-cell transcriptomic sequencing analysis of the ECs in the embryos exposed to high glucose revealed an augmented ratio of capillary ECs, proliferating ECs, and a series of upregulated proangiogenic genes. Further analysis and experiments validated that reduced foxo1a mediated the excessive angiogenesis induced by monosaccharides via upregulating the expression of marcksl1a. This study has provided new evidence showing the negative effects of noncaloric monosaccharides on the vascular system and the underlying mechanisms.