Risk of heart disease following treatment for breast cancer: results from a population-based cohort study

  1. Haomin Yang  Is a corresponding author
  2. Nirmala Bhoo Pathy
  3. Judith S Brand
  4. Elham Hedayati
  5. Felix Grassmann
  6. Erwei Zeng
  7. Jonas Bergh
  8. Weiwei Bian
  9. Jonas F Ludvigsson
  10. Per Hall
  11. Kamila Czene
  1. Fujian Medical University, China
  2. University of Malaya, Malaysia
  3. Örebro University, Sweden
  4. Karolinska Institutet, Sweden

Abstract

Background: There is a rising concern about treatment-associated cardiotoxicities in breast cancer patients. This study aimed to determine the time- and treatment-specific incidence of arrhythmia, heart failure and ischemic heart disease in women diagnosed with breast cancer.

Methods: A register-based matched cohort study was conducted including 8015 breast cancer patients diagnosed from 2001-2008 in the Stockholm-Gotland region and followed-up until 2017. Time-dependent risks of arrhythmia, heart failure and ischemic heart disease in breast cancer patients were assessed using flexible parametric models as compared to matched controls from general population. Treatment-specific effects were estimated in breast cancer patients using Cox model.

Results: Time-dependent analyses revealed long-term increased risks of arrhythmia and heart failure following breast cancer diagnosis. Hazard ratios (HRs) within the first year of diagnosis were 2.14 (95% CI = 1.63-2.81) for arrhythmia and 2.71 (95% CI = 1.70-4.33) for heart failure. HR more than 10 years following diagnosis was 1.42 (95% CI = 1.21-1.67) for arrhythmia and 1.28 (95% CI = 1.03-1.59) for heart failure. The risk for ischemic heart disease was significantly increased only during the first year after diagnosis (HR=1.45, 95% CI = 1.03-2.04). Trastuzumab and anthracyclines were associated with increased risk of heart failure. Aromatase inhibitors, but not tamoxifen, were associated with risk of ischemic heart disease. No increased risk of heart disease was identified following loco-regional radiotherapy.

Conclusions: Administration of systemic adjuvant therapies appears to be associated with increased risks of heart disease. The risk estimates observed in this study may aid adjuvant therapy decision-making and patient counseling in oncology practices.

Funding: This work was supported by the Swedish Research Council [grant no: 2018-02547]; Swedish Cancer Society [grant no: CAN-19-0266] and FORTE [grant no: 2016-00081].

Data availability

The data used in this study are owned by the Swedish National Board of Health and Welfare and Statistics Sweden. According to Swedish law and GDPR, the authors are not able to make the dataset publicly available. Any researchers (including international researchers) interested in obtaining the data can do so by the following steps: 1) apply for ethical approval from their local ethical review boards; 2) contact the Swedish National Board of Health and Welfare and/or Statistics Sweden with the ethical approval and make a formal application of use of register data.

Article and author information

Author details

  1. Haomin Yang

    Department of Epidemiology and Health Statistics, Fujian Medical University, Fuzhou, China
    For correspondence
    haomin.yang@ki.se
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2252-2606
  2. Nirmala Bhoo Pathy

    Department of Social and Preventive Medicine, University of Malaya, Kuala Lumpur, Malaysia
    Competing interests
    Nirmala Bhoo Pathy, received educational grants to their institution from Novartis, Pfizer, AIA Bhd and Pharmaceutical Association of Malaysia.Has received speaker's fees from Novartis, Pfizer and Roche, and received travel support from Roche and Pharmaceutical Association of Malaysia to attend conferences in 2018 and 2019. Has served on the advisory board of Pfizer Asia Pacific, Malaysia (2017/18 year), and been a committee member for Together Against Cancer (NGO) (2018 and 2019). Roche Diagnostics also provided Nirmala Bhoo-Pathy with research material, namely COVID-19 total antibody kits. The author has no other competing interests to declare..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0568-8863
  3. Judith S Brand

    School of Medical Sciences, Örebro University, Örebro, Sweden
    Competing interests
    No competing interests declared.
  4. Elham Hedayati

    Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  5. Felix Grassmann

    Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1390-7528
  6. Erwei Zeng

    Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  7. Jonas Bergh

    Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    Jonas Bergh, research was supported by payments from Amgen, AstraZeneca, Bayer, Merck, Roche and Sanofi-Aventis to their institution, along with payments from non-profit organisations (Swedish Cancer Society and Knut Alice Wallenberg) and the Swedish Research Council. Also gave lectures to Astra Zeneca and Roche (no personal payment was received for these). Is a scientific advisor to The Medical product agency and to EMA, and is a representative of Swedish Breast Cancer Group. The author has no other competing interests to declare..
  8. Weiwei Bian

    Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    No competing interests declared.
  9. Jonas F Ludvigsson

    Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    Jonas F Ludvigsson, coordinates a study on behalf of the Swedish IBD quality register (SWIBREG). This study has received funding from Janssen corporation. The author has no other competing interests to declare..
  10. Per Hall

    Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5640-9126
  11. Kamila Czene

    Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    No competing interests declared.

Funding

Natural Science Foundation of Fujian Province (2021J01721)

  • Haomin Yang

China Scholarship council

  • Weiwei Bian

Startup Fund for High-level Talents of Fujian Medical University (XRCZX2020007)

  • Haomin Yang

Startup Fund for Scientific Research, Fujian Medical University (2019QH1002)

  • Haomin Yang

Laboratory Construction Program of Fujian Medical University (1100160208)

  • Haomin Yang

Vetenskapsrådet (2018-02547)

  • Kamila Czene

Swedish Cancer Foundation (CAN-19-0266)

  • Kamila Czene

Forskningsrådet om Hälsa, Arbetsliv och Välfärd (2016-00081)

  • Kamila Czene

University of Malaya Impact-Oriented Interdisciplinary Research Grant Programme (IIRG006C-19HWB)

  • Nirmala Bhoo Pathy

China scholarship council

  • Erwei Zeng

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Wadih Arap, Rutgers Cancer Institute of New Jersey, United States

Ethics

Human subjects: The study was approved by the Regional Ethical Review Board in Stockholm (Dnr 2009/254-31/4). In accordance with their decision, it was not necessary to obtain informed consent from participants involved in the study. All individuals' information was anonymized and de-identified prior to analysis.

Version history

  1. Received: June 23, 2021
  2. Preprint posted: September 21, 2021 (view preprint)
  3. Accepted: March 8, 2022
  4. Accepted Manuscript published: March 16, 2022 (version 1)
  5. Version of Record published: March 22, 2022 (version 2)

Copyright

© 2022, Yang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,369
    views
  • 289
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Haomin Yang
  2. Nirmala Bhoo Pathy
  3. Judith S Brand
  4. Elham Hedayati
  5. Felix Grassmann
  6. Erwei Zeng
  7. Jonas Bergh
  8. Weiwei Bian
  9. Jonas F Ludvigsson
  10. Per Hall
  11. Kamila Czene
(2022)
Risk of heart disease following treatment for breast cancer: results from a population-based cohort study
eLife 11:e71562.
https://doi.org/10.7554/eLife.71562

Share this article

https://doi.org/10.7554/eLife.71562

Further reading

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Patrick E Brown, Sze Hang Fu ... Ab-C Study Collaborators
    Research Article

    Background: Few national-level studies have evaluated the impact of 'hybrid' immunity (vaccination coupled with recovery from infection) from the Omicron variants of SARS-CoV-2.

    Methods: From May 2020 to December 2022, we conducted serial assessments (each of ~4000-9000 adults) examining SARS-CoV-2 antibodies within a mostly representative Canadian cohort drawn from a national online polling platform. Adults, most of whom were vaccinated, reported viral test-confirmed infections and mailed self-collected dried blood spots to a central lab. Samples underwent highly sensitive and specific antibody assays to spike and nucleocapsid protein antigens, the latter triggered only by infection. We estimated cumulative SARS-CoV-2 incidence prior to the Omicron period and during the BA.1/1.1 and BA.2/5 waves. We assessed changes in antibody levels and in age-specific active immunity levels.

    Results: Spike levels were higher in infected than in uninfected adults, regardless of vaccination doses. Among adults vaccinated at least thrice and infected more than six months earlier, spike levels fell notably and continuously for the nine months post-vaccination. By contrast, among adults infected within six months, spike levels declined gradually. Declines were similar by sex, age group, and ethnicity. Recent vaccination attenuated declines in spike levels from older infections. In a convenience sample, spike antibody and cellular responses were correlated. Near the end of 2022, about 35% of adults above age 60 had their last vaccine dose more than six months ago, and about 25% remained uninfected. The cumulative incidence of SARS-CoV-2 infection rose from 13% (95% CI 11-14%) before omicron to 78% (76-80%) by December 2022, equating to 25 million infected adults cumulatively. However, the COVID-19 weekly death rate during the BA.2/5 waves was less than half of that during the BA.1/1.1 wave, implying a protective role for hybrid immunity.

    Conclusions: Strategies to maintain population-level hybrid immunity require up-to-date vaccination coverage, including among those recovering from infection. Population-based, self-collected dried blood spots are a practicable biological surveillance platform.

    Funding: Funding was provided by the COVID-19 Immunity Task Force, Canadian Institutes of Health Research, Pfizer Global Medical Grants, and St. Michael's Hospital Foundation. PJ and ACG are funded by the Canada Research Chairs Program.

    1. Computational and Systems Biology
    2. Epidemiology and Global Health
    Javier I Ottaviani, Virag Sagi-Kiss ... Gunter GC Kuhnle
    Research Article

    The chemical composition of foods is complex, variable, and dependent on many factors. This has a major impact on nutrition research as it foundationally affects our ability to adequately assess the actual intake of nutrients and other compounds. In spite of this, accurate data on nutrient intake are key for investigating the associations and causal relationships between intake, health, and disease risk at the service of developing evidence-based dietary guidance that enables improvements in population health. Here, we exemplify the importance of this challenge by investigating the impact of food content variability on nutrition research using three bioactives as model: flavan-3-ols, (–)-epicatechin, and nitrate. Our results show that common approaches aimed at addressing the high compositional variability of even the same foods impede the accurate assessment of nutrient intake generally. This suggests that the results of many nutrition studies using food composition data are potentially unreliable and carry greater limitations than commonly appreciated, consequently resulting in dietary recommendations with significant limitations and unreliable impact on public health. Thus, current challenges related to nutrient intake assessments need to be addressed and mitigated by the development of improved dietary assessment methods involving the use of nutritional biomarkers.