Unsupervised detection of fragment length signatures of circulating tumor DNA using non-negative matrix factorization

  1. Gabriel Renaud
  2. Maibritt Nørgaard
  3. Johan Lindberg
  4. Henrik Grönberg
  5. Bram De Laere
  6. Jørgen Bjerggaard Jensen
  7. Michael Borre
  8. Claus Lindbjerg Andersen
  9. Karina Dalsgaard Sørensen
  10. Lasse Maretty  Is a corresponding author
  11. Søren Besenbacher  Is a corresponding author
  1. Technical University of Denmark, Denmark
  2. Aarhus University, Denmark
  3. Karolinska Institute, Sweden
  4. Regional Hospital of West Jutland, Denmark
  5. Aarhus University Hospital, Denmark

Abstract

Sequencing of cell-free DNA (cfDNA) is currently being used to detect cancer by searching both for mutational and non-mutational alterations. Recent work has shown that the length distribution of cfDNA fragments from a cancer patient can inform tumor load and type. Here, we propose non-negative matrix factorization (NMF) of fragment length distributions as a novel and completely unsupervised method for studying fragment length patterns in cfDNA. Using shallow whole-genome sequencing (sWGS) of cfDNA from a cohort of patients with metastatic castration-resistant prostate cancer (mCRPC), we demonstrate how NMF accurately infers the true tumor fragment length distribution as an NMF component - and that the sample weights of this component correlate with ctDNA levels (r=0.75). We further demonstrate how using several NMF components enables accurate cancer detection on data from various early stage cancers (AUC=0.96). Finally, we show that NMF, when applied across genomic regions, can be used to discover fragment length signatures associated with open chromatin.

Data availability

Danish law requires ethical approval of any specific research aim and imposes restrictions on sharing of personal data. This means that the prostate cancer data used in this article cannot be uploaded to international databases. External researchers (academic or commercial) interested in analysing the prostate dataset (including any derivatives of it) will need to contact the Data Access Committee via email to kdso@clin.au.dk. The Data Access Committee is formed of co-authors Karina Dalsgaard Sørensen and Michael Borre, and Ole Halfdan Larsen (Department Head Consultant, Department of Clinical Medicine, Aarhus University). Due to Danish Law, for the authors to be allowed to share the data (pseudonymised) it will require prior approval from The Danish National Committee on Health Research Ethics (or similar) for the specific new research goal. The author (based in Denmark) has to submit the application for ethical approval, with the external researcher(s) as named collaborator(s)). In addition to ethical approval, a Collaboration Agreement and a Data Processing Agreement is required, both of which must be approved by the legal office of the institution of the author (data owner) and the legal office of the institution of the external researcher (data processor). Raw fragment length distributions along with ctDNA% estimates are available in Supplementary File 1.

The following previously published data sets were used

Article and author information

Author details

  1. Gabriel Renaud

    Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  2. Maibritt Nørgaard

    Department of Molecular Medicine, Aarhus University, Aarhus N, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Johan Lindberg

    Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  4. Henrik Grönberg

    Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Bram De Laere

    Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  6. Jørgen Bjerggaard Jensen

    Department of Urology, Regional Hospital of West Jutland, Holstebro, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  7. Michael Borre

    Department of Urology, Aarhus University Hospital, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  8. Claus Lindbjerg Andersen

    Department of Molecular Medicine, Aarhus University, Aarhus N, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  9. Karina Dalsgaard Sørensen

    Department of Molecular Medicine, Aarhus University, Aarhus N, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  10. Lasse Maretty

    Department of Molecular Medicine, Aarhus University, Aarhus N, Denmark
    For correspondence
    lasse.maretty@clin.au.dk
    Competing interests
    The authors declare that no competing interests exist.
  11. Søren Besenbacher

    Department of Molecular Medicine, Aarhus University, Aarhus N, Denmark
    For correspondence
    besenbacher@clin.au.dk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1455-1738

Funding

The Independent Research Fund Denmark (Sapere Aude Research Leader)

  • Søren Besenbacher

The Danish Cancer Society

  • Karina Dalsgaard Sørensen

The Central Denmark Region Health Fund

  • Karina Dalsgaard Sørensen

Aarhus Universitet (Graduate School of Health)

  • Maibritt Nørgaard

Direktør Emil C. Hertz og Hustru Inger Hertz Fond

  • Karina Dalsgaard Sørensen

KV Fonden

  • Karina Dalsgaard Sørensen

Raimond og Dagmar Ringgård-Bohns Fond

  • Karina Dalsgaard Sørensen

Beckett Fonden

  • Karina Dalsgaard Sørensen

Snedkermester Sophus Jacobsen og Hustru Astrid Jacobsens Fond

  • Karina Dalsgaard Sørensen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The prostate study was approved by The National Committee on Health Research Ethics (#1901101) and notified to The Danish Data Protection Agency (#1-16-02-366-15). All patients provided written informed consent.

Copyright

© 2022, Renaud et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,307
    views
  • 473
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gabriel Renaud
  2. Maibritt Nørgaard
  3. Johan Lindberg
  4. Henrik Grönberg
  5. Bram De Laere
  6. Jørgen Bjerggaard Jensen
  7. Michael Borre
  8. Claus Lindbjerg Andersen
  9. Karina Dalsgaard Sørensen
  10. Lasse Maretty
  11. Søren Besenbacher
(2022)
Unsupervised detection of fragment length signatures of circulating tumor DNA using non-negative matrix factorization
eLife 11:e71569.
https://doi.org/10.7554/eLife.71569

Share this article

https://doi.org/10.7554/eLife.71569

Further reading

    1. Cancer Biology
    2. Genetics and Genomics
    Joakim W Karlsson, Vasu R Sah ... Jonas A Nilsson
    Research Article

    Uveal melanoma (UM) is a rare melanoma originating in the eye’s uvea, with 50% of patients experiencing metastasis predominantly in the liver. In contrast to cutaneous melanoma, there is only a limited effectiveness of combined immune checkpoint therapies, and half of patients with uveal melanoma metastases succumb to disease within 2 years. This study aimed to provide a path toward enhancing immunotherapy efficacy by identifying and functionally validating tumor-reactive T cells in liver metastases of patients with UM. We employed single-cell RNA-seq of biopsies and tumor-infiltrating lymphocytes (TILs) to identify potential tumor-reactive T cells. Patient-derived xenograft (PDX) models of UM metastases were created from patients, and tumor sphere cultures were generated from these models for co-culture with autologous or MART1-specific HLA-matched allogenic TILs. Activated T cells were subjected to TCR-seq, and the TCRs were matched to those found in single-cell sequencing data from biopsies, expanded TILs, and in livers or spleens of PDX models injected with TILs. Our findings revealed that tumor-reactive T cells resided not only among activated and exhausted subsets of T cells, but also in a subset of cytotoxic effector cells. In conclusion, combining single-cell sequencing and functional analysis provides valuable insights into which T cells in UM may be useful for cell therapy amplification and marker selection.

    1. Cancer Biology
    Samarjit Jana, Mainak Mondal ... Kumaravel Somasundaram
    Research Article

    In tumors with WT p53, alternate mechanisms of p53 inactivation are reported. Here, we have identified a long noncoding RNA, PITAR (p53 Inactivating TRIM28 Associated RNA), as an inhibitor of p53. PITAR is an oncogenic Cancer/testis lncRNA and is highly expressed in glioblastoma (GBM) and glioma stem-like cells (GSC). We establish that TRIM28 mRNA, which encodes a p53-specific E3 ubiquitin ligase, is a direct target of PITAR. PITAR interaction with TRIM28 RNA stabilized TRIM28 mRNA, which resulted in increased TRIM28 protein levels and reduced p53 steady-state levels due to enhanced p53 ubiquitination. DNA damage activated PITAR, in addition to p53, in a p53-independent manner, thus creating an incoherent feedforward loop to inhibit the DNA damage response by p53. While PITAR silencing inhibited the growth of WT p53 containing GSCs in vitro and reduced glioma tumor growth in vivo, its overexpression enhanced the tumor growth in a TRIM28-dependent manner and promoted resistance to Temozolomide. Thus, we establish an alternate way of p53 inactivation by PITAR, which maintains low p53 levels in normal cells and attenuates the DNA damage response by p53. Finally, we propose PITAR as a potential GBM therapeutic target.