Multi-omic rejuvenation of human cells by maturation phase transient reprogramming
Abstract
Ageing is the gradual decline in organismal fitness that occurs over time leading to tissue dysfunction and disease. At the cellular level, ageing is associated with reduced function, altered gene expression and a perturbed epigenome. Somatic cell reprogramming, the process of converting somatic cells to induced pluripotent stem cells (iPSCs), can reverse these age-associated changes. However, during iPSC reprogramming, somatic cell identity is lost, and can be difficult to reacquire as re-differentiated iPSCs often resemble foetal rather than mature adult cells. Recent work has demonstrated that the epigenome is already rejuvenated by the maturation phase of reprogramming, which suggests full iPSC reprogramming is not required to reverse ageing of somatic cells. Here we have developed the first 'maturation phase transient reprogramming' (MPTR) method, where reprogramming factors are expressed until this rejuvenation point followed by withdrawal of their induction. Using dermal fibroblasts from middle age donors, we found that cells temporarily lose and then reacquire their fibroblast identity during MPTR, possibly as a result of epigenetic memory at enhancers and/or persistent expression of some fibroblast genes. Excitingly, our method substantially rejuvenated multiple cellular attributes including the transcriptome, which was rejuvenated by around 30 years as measured by a novel transcriptome clock. The epigenome, including H3K9me3 histone methylation levels and the DNA methylation ageing clock, was rejuvenated to a similar extent. The magnitude of rejuvenation instigated by MTPR appears substantially greater than that achieved in previous transient reprogramming protocols. In addition, MPTR fibroblasts produced youthful levels of collagen proteins, and showed partial functional rejuvenation of their migration speed. Finally, our work suggests that more extensive reprogramming does not necessarily result in greater rejuvenation but instead that optimal time windows exist for rejuvenating the transcriptome and the epigenome. Overall, we demonstrate that it is possible to separate rejuvenation from complete pluripotency reprogramming, which should facilitate the discovery of novel anti-ageing genes and therapies.
Data availability
DNA methylation array and RNA-seq data are available on Gene Expression Omnibus under the accession number: GSE165180.
-
Multi-omic rejuvenation of human cells by maturation phase transient reprogrammingNCBI Gene Expression Omnibus, GSE165180.
-
Predicting age from the transcriptome of human dermal fibroblastsGene Expression Omnibus, GSE113957.
-
Impact of regulatory variation across human iPSCs and differentiated cells [RNA-seq]Gene Expression Omnibus, GSE107654.
-
Impact of regulatory variation across human iPSCs and differentiated cells [methylation]Gene Expression Omnibus, GSE110544.
Article and author information
Author details
Funding
Biotechnology and Biological Sciences Research Council
- Diljeet Gill
- Fátima Santos
- Hanneke Okkenhaug
- Christopher D Todd
- Irene Hernando-Herraez
- Thomas M Stubbs
- Inês Milagre
- Wolf Reik
Wellcome Trust
- Aled Parry
Milky Way Research Foundation
- Diljeet Gill
- Wolf Reik
Wellcome Investigator award (210754/Z/18/Z)
- Wolf Reik
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Jessica K Tyler, Weill Cornell Medicine, United States
Publication history
- Preprint posted: January 17, 2021 (view preprint)
- Received: June 24, 2021
- Accepted: April 6, 2022
- Accepted Manuscript published: April 8, 2022 (version 1)
- Version of Record published: April 21, 2022 (version 2)
Copyright
© 2022, Gill et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 53,592
- Page views
-
- 6,119
- Downloads
-
- 1
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Genetics and Genomics
- Neuroscience
Homeostatic and circadian processes collaborate to appropriately time and consolidate sleep and wake. To understand how these processes are integrated, we scheduled brief sleep deprivation at different times of day in Drosophila and find elevated morning rebound compared to evening. These effects depend on discrete morning and evening clock neurons, independent of their roles in circadian locomotor activity. In the R5 ellipsoid body sleep homeostat, we identified elevated morning expression of activity dependent and presynaptic gene expression as well as the presynaptic protein BRUCHPILOT consistent with regulation by clock circuits. These neurons also display elevated calcium levels in response to sleep loss in the morning, but not the evening consistent with the observed time-dependent sleep rebound. These studies reveal the circuit and molecular mechanisms by which discrete circadian clock neurons program a homeostatic sleep center.
-
- Genetics and Genomics
Exome sequencing on tens of thousands of parent-proband trios has identified numerous deleterious de novo mutations (DNMs) and implicated risk genes for many disorders. Recent studies have suggested shared genes and pathways are enriched for DNMs across multiple disorders. However, existing analytic strategies only focus on genes that reach statistical significance for multiple disorders and require large trio samples in each study. As a result, these methods are not able to characterize the full landscape of genetic sharing due to polygenicity and incomplete penetrance. In this work, we introduce EncoreDNM, a novel statistical framework to quantify shared genetic effects between two disorders characterized by concordant enrichment of DNMs in the exome. EncoreDNM makes use of exome-wide, summary-level DNM data, including genes that do not reach statistical significance in single-disorder analysis, to evaluate the overall and annotation-partitioned genetic sharing between two disorders. Applying EncoreDNM to DNM data of nine disorders, we identified abundant pairwise enrichment correlations, especially in genes intolerant to pathogenic mutations and genes highly expressed in fetal tissues. These results suggest that EncoreDNM improves current analytic approaches and may have broad applications in DNM studies.