Divergent acyl carrier protein decouples mitochondrial Fe-S cluster biogenesis from fatty acid synthesis in malaria parasites

  1. Seyi Falekun
  2. Jaime Sepulveda
  3. Yasaman Jami-Alahmadi
  4. Hahnbeom Park
  5. James A Wohlschlegel
  6. Paul A Sigala  Is a corresponding author
  1. University of Utah School of Medicine, United States
  2. University of California, Los Angeles, United States
  3. University of Washington, United States

Abstract

Most eukaryotic cells retain a mitochondrial fatty acid synthesis (FASII) pathway whose acyl carrier protein (mACP) and 4-phosphopantetheine (Ppant) prosthetic group provide a soluble scaffold for acyl chain synthesis and biochemically couple FASII activity to mitochondrial electron transport chain (ETC) assembly and Fe-S cluster biogenesis. In contrast, the mitochondrion of Plasmodium falciparum malaria parasites lacks FASII enzymes yet curiously retains a divergent mACP lacking a Ppant group. We report that ligand-dependent knockdown of mACP is lethal to parasites, indicating an essential FASII-independent function. Decyl-ubiquinone rescues parasites temporarily from death, suggesting a dominant dysfunction of the mitochondrial ETC. Biochemical studies reveal that Plasmodium mACP binds and stabilizes the Isd11-Nfs1 complex required for Fe-S cluster biosynthesis, despite lacking the Ppant group required for this association in other eukaryotes, and knockdown of parasite mACP causes loss of Nfs1 and the Rieske Fe-S protein in ETC Complex III. This work reveals that Plasmodium parasites have evolved to decouple mitochondrial Fe-S cluster biogenesis from FASII activity, and this adaptation is a shared metabolic feature of other apicomplexan pathogens, including Toxoplasma and Babesia. This discovery unveils an evolutionary driving force to retain interaction of mitochondrial Fe-S cluster biogenesis with ACP independent of its eponymous function in FASII.

Data availability

All data reported or analyzed in this manuscript are available and included in the main and supplemental figures and in the source data files.

Article and author information

Author details

  1. Seyi Falekun

    University of Utah School of Medicine, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jaime Sepulveda

    University of Utah School of Medicine, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yasaman Jami-Alahmadi

    University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Hahnbeom Park

    Department of Biochemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. James A Wohlschlegel

    University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Paul A Sigala

    University of Utah School of Medicine, Salt Lake City, United States
    For correspondence
    p.sigala@biochem.utah.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3464-3042

Funding

National Institute of General Medical Sciences (R35GM133764)

  • Paul A Sigala

National Institute of General Medical Sciences (R01GM089778)

  • James A Wohlschlegel

National Institute of Diabetes and Digestive and Kidney Diseases (U54DK110858)

  • Paul A Sigala

Burroughs Wellcome Fund (1011969)

  • Paul A Sigala

Pew Charitable Trusts (32099)

  • Paul A Sigala

National Institute of General Medical Sciences (T32GM122740)

  • Jaime Sepulveda

National Institutes of Health (S10OD018210)

  • Paul A Sigala

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Malcolm J McConville, The University of Melbourne, Australia

Version history

  1. Preprint posted: April 13, 2021 (view preprint)
  2. Received: June 25, 2021
  3. Accepted: October 6, 2021
  4. Accepted Manuscript published: October 6, 2021 (version 1)
  5. Version of Record published: October 26, 2021 (version 2)

Copyright

© 2021, Falekun et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,828
    views
  • 267
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Seyi Falekun
  2. Jaime Sepulveda
  3. Yasaman Jami-Alahmadi
  4. Hahnbeom Park
  5. James A Wohlschlegel
  6. Paul A Sigala
(2021)
Divergent acyl carrier protein decouples mitochondrial Fe-S cluster biogenesis from fatty acid synthesis in malaria parasites
eLife 10:e71636.
https://doi.org/10.7554/eLife.71636

Share this article

https://doi.org/10.7554/eLife.71636

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.