1. Biochemistry and Chemical Biology
  2. Microbiology and Infectious Disease
Download icon

Divergent acyl carrier protein decouples mitochondrial Fe-S cluster biogenesis from fatty acid synthesis in malaria parasites

  1. Seyi Falekun
  2. Jaime Sepulveda
  3. Yasaman Jami-Alahmadi
  4. Hahnbeom Park
  5. James A Wohlschlegel
  6. Paul A Sigala  Is a corresponding author
  1. University of Utah School of Medicine, United States
  2. University of California, Los Angeles, United States
  3. University of Washington, United States
Research Article
  • Cited 0
  • Views 418
  • Annotations
Cite this article as: eLife 2021;10:e71636 doi: 10.7554/eLife.71636

Abstract

Most eukaryotic cells retain a mitochondrial fatty acid synthesis (FASII) pathway whose acyl carrier protein (mACP) and 4-phosphopantetheine (Ppant) prosthetic group provide a soluble scaffold for acyl chain synthesis and biochemically couple FASII activity to mitochondrial electron transport chain (ETC) assembly and Fe-S cluster biogenesis. In contrast, the mitochondrion of Plasmodium falciparum malaria parasites lacks FASII enzymes yet curiously retains a divergent mACP lacking a Ppant group. We report that ligand-dependent knockdown of mACP is lethal to parasites, indicating an essential FASII-independent function. Decyl-ubiquinone rescues parasites temporarily from death, suggesting a dominant dysfunction of the mitochondrial ETC. Biochemical studies reveal that Plasmodium mACP binds and stabilizes the Isd11-Nfs1 complex required for Fe-S cluster biosynthesis, despite lacking the Ppant group required for this association in other eukaryotes, and knockdown of parasite mACP causes loss of Nfs1 and the Rieske Fe-S protein in ETC Complex III. This work reveals that Plasmodium parasites have evolved to decouple mitochondrial Fe-S cluster biogenesis from FASII activity, and this adaptation is a shared metabolic feature of other apicomplexan pathogens, including Toxoplasma and Babesia. This discovery unveils an evolutionary driving force to retain interaction of mitochondrial Fe-S cluster biogenesis with ACP independent of its eponymous function in FASII.

Data availability

All data reported or analyzed in this manuscript are available and included in the main and supplemental figures and in the source data files.

Article and author information

Author details

  1. Seyi Falekun

    University of Utah School of Medicine, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jaime Sepulveda

    University of Utah School of Medicine, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yasaman Jami-Alahmadi

    University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Hahnbeom Park

    Department of Biochemistry, University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. James A Wohlschlegel

    University of California, Los Angeles, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Paul A Sigala

    University of Utah School of Medicine, Salt Lake City, United States
    For correspondence
    p.sigala@biochem.utah.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3464-3042

Funding

National Institute of General Medical Sciences (R35GM133764)

  • Paul A Sigala

National Institute of General Medical Sciences (R01GM089778)

  • James A Wohlschlegel

National Institute of Diabetes and Digestive and Kidney Diseases (U54DK110858)

  • Paul A Sigala

Burroughs Wellcome Fund (1011969)

  • Paul A Sigala

Pew Charitable Trusts (32099)

  • Paul A Sigala

National Institute of General Medical Sciences (T32GM122740)

  • Jaime Sepulveda

National Institutes of Health (S10OD018210)

  • Paul A Sigala

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Malcolm J McConville, The University of Melbourne, Australia

Publication history

  1. Received: June 25, 2021
  2. Accepted: October 6, 2021
  3. Accepted Manuscript published: October 6, 2021 (version 1)

Copyright

© 2021, Falekun et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 418
    Page views
  • 88
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Krishna S Ghanta et al.
    Research Article

    Nuclease-directed genome editing is a powerful tool for investigating physiology and has great promise as a therapeutic approach to correct mutations that cause disease. In its most precise form, genome editing can use cellular homology-directed repair (HDR) pathways to insert information from an exogenously supplied DNA repair template (donor) directly into a targeted genomic location. Unfortunately, particularly for long insertions, toxicity and delivery considerations associated with repair template DNA can limit HDR efficacy. Here, we explore chemical modifications to both double-stranded and single-stranded DNA-repair templates. We describe 5′-terminal modifications, including in its simplest form the incorporation of triethylene glycol (TEG) moieties, that consistently increase the frequency of precision editing in the germlines of three animal models (Caenorhabditis elegans, zebrafish, mice) and in cultured human cells.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Paul Fischer et al.
    Research Article

    Enzymerhodopsins represent a recently discovered class of rhodopsins which includes histidine kinase rhodopsin, rhodopsin phosphodiesterases and rhodopsin guanylyl cyclases (RGCs). The regulatory influence of the rhodopsin domain on the enzyme activity is only partially understood and holds the key for a deeper understanding of intra-molecular signaling pathways. Here we present a UV-Vis and FTIR study about the light-induced dynamics of a RGC from the fungus Catenaria anguillulae, which provides insights into the catalytic process. After the spectroscopic characterization of the late rhodopsin photoproducts, we analyzed truncated variants and revealed the involvement of the cytosolic N-terminus in the structural rearrangements upon photo-activation of the protein. We tracked the catalytic reaction of RGC and the free GC domain independently by UV-light induced release of GTP from the photolabile NPE-GTP substrate. Our results show substrate binding to the dark-adapted RGC and GC alike and reveal differences between the constructs attributable to the regulatory influence of the rhodopsin on the conformation of the binding pocket. By monitoring the phosphate rearrangement during cGMP and pyrophosphate formation in light-activated RGC, we were able to confirm the M state as the active state of the protein. The described setup and experimental design enable real-time monitoring of substrate turnover in light-activated enzymes on a molecular scale, thus opening the pathway to a deeper understanding of enzyme activity and protein-protein interactions.