Abstract

RtcB enzymes are RNA ligases that play essential roles in tRNA splicing, unfolded protein response, and RNA repair. In metazoa, RtcB functions as part of a five-subunit tRNA ligase complex (tRNA-LC) along with Ddx1, Cgi-99, Fam98B and Ashwin. The human tRNA-LC or its individual subunits have been implicated in additional cellular processes including microRNA maturation, viral replication, DNA double-strand break repair and mRNA transport. Here we present a biochemical analysis of the inter-subunit interactions within the human tRNA-LC along with crystal structures of the catalytic subunit RTCB and the N-terminal domain of CGI-99. We show that the core of the human tRNA-LC is assembled from RTCB and the C-terminal alpha-helical regions of DDX1, CGI-99, and FAM98B, all of which are required for complex integrity. The N-terminal domain of CGI-99 displays structural homology to calponin-homology domains, and CGI-99 and FAM98B associate via their N-terminal domains to form a stable subcomplex. The crystal structure of GMP-bound RTCB reveals divalent metal coordination geometry in the active site, providing insights into its catalytic mechanism. Collectively, these findings shed light on the molecular architecture and mechanism of the human tRNA ligase complex, and provide a structural framework for understanding its functions in cellular RNA metabolism.

Data availability

X-ray diffraction data and atomic models have been deposited in the Protein Data Bank under accession codes 7P3A (CGI-99 N-terminal domain) and 7P3B (RTCB in complex with GMP and Co(II)).The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository with the dataset identifier PXD025662

The following data sets were generated

Article and author information

Author details

  1. Alena Kroupova

    Department of Biochemistry, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Fabian Ackle

    Department of Biochemistry, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7199-5004
  3. Igor Asanović

    Max Perutz Laboratories, Medical University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  4. Stefan Weitzer

    Max Perutz Laboratories, Medical University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  5. Franziska M Boneberg

    Department of Biochemistry, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Marco Faini

    Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Alexander Leitner

    Department of Biology, University of Konstanz, Konstanz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Alessia Chui

    Department of Biochemistry, University of Zurich, Zurich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  9. Ruedi Aebersold

    Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  10. Javier Martinez

    Max Perutz Laboratories, Medical University of Vienna, Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  11. Martin Jinek

    Department of Biochemistry, University of Zurich, Zurich, Switzerland
    For correspondence
    jinek@bioc.uzh.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7601-210X

Funding

Boehringer Ingelheim Fonds (PhD Fellowship)

  • Alena Kroupova

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (NCCR RNA & Disease)

  • Alena Kroupova
  • Fabian Ackle
  • Franziska M Boneberg
  • Alexander Leitner
  • Martin Jinek

Fonds zur Forderung der wissenschaftlichen Forschung (P29888)

  • Igor Asanović
  • Stefan Weitzer
  • Javier Martinez

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Kroupova et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,881
    views
  • 490
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alena Kroupova
  2. Fabian Ackle
  3. Igor Asanović
  4. Stefan Weitzer
  5. Franziska M Boneberg
  6. Marco Faini
  7. Alexander Leitner
  8. Alessia Chui
  9. Ruedi Aebersold
  10. Javier Martinez
  11. Martin Jinek
(2021)
Molecular architecture of the human tRNA ligase complex
eLife 10:e71656.
https://doi.org/10.7554/eLife.71656

Share this article

https://doi.org/10.7554/eLife.71656

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Katherine A Senn, Karli A Lipinski ... Aaron A Hoskins
    Research Article

    Pre-mRNA splicing is catalyzed in two steps: 5ʹ splice site (SS) cleavage and exon ligation. A number of proteins transiently associate with spliceosomes to specifically impact these steps (first and second step factors). We recently identified Fyv6 (FAM192A in humans) as a second step factor in Saccharomyces cerevisiae; however, we did not determine how widespread Fyv6’s impact is on the transcriptome. To answer this question, we have used RNA sequencing (RNA-seq) to analyze changes in splicing. These results show that loss of Fyv6 results in activation of non-consensus, branch point (BP) proximal 3ʹ SS transcriptome-wide. To identify the molecular basis of these observations, we determined a high-resolution cryo-electron microscopy (cryo-EM) structure of a yeast product complex spliceosome containing Fyv6 at 2.3 Å. The structure reveals that Fyv6 is the only second step factor that contacts the Prp22 ATPase and that Fyv6 binding is mutually exclusive with that of the first step factor Yju2. We then use this structure to dissect Fyv6 functional domains and interpret results of a genetic screen for fyv6Δ suppressor mutations. The combined transcriptomic, structural, and genetic studies allow us to propose a model in which Yju2/Fyv6 exchange facilitates exon ligation and Fyv6 promotes usage of consensus, BP distal 3ʹ SS.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Eyal Paz, Sahil Jain ... Abdussalam Azem
    Research Article

    TIMM50, an essential TIM23 complex subunit, is suggested to facilitate the import of ~60% of the mitochondrial proteome. In this study, we characterized a TIMM50 disease-causing mutation in human fibroblasts and noted significant decreases in TIM23 core protein levels (TIMM50, TIMM17A/B, and TIMM23). Strikingly, TIMM50 deficiency had no impact on the steady-state levels of most of its putative substrates, suggesting that even low levels of a functional TIM23 complex are sufficient to maintain the majority of TIM23 complex-dependent mitochondrial proteome. As TIMM50 mutations have been linked to severe neurological phenotypes, we aimed to characterize TIMM50 defects in manipulated mammalian neurons. TIMM50 knockdown in mouse neurons had a minor effect on the steady state level of most of the mitochondrial proteome, supporting the results observed in patient fibroblasts. Amongst the few affected TIM23 substrates, a decrease in the steady state level of components of the intricate oxidative phosphorylation and mitochondrial ribosome complexes was evident. This led to declined respiration rates in fibroblasts and neurons, reduced cellular ATP levels, and defective mitochondrial trafficking in neuronal processes, possibly contributing to the developmental defects observed in patients with TIMM50 disease. Finally, increased electrical activity was observed in TIMM50 deficient mice neuronal cells, which correlated with reduced levels of KCNJ10 and KCNA2 plasma membrane potassium channels, likely underlying the patients’ epileptic phenotype.