The transcription factor Xrp1 orchestrates both reduced translation and cell competition upon defective ribosome assembly or function

  1. Marianthi Kiparaki  Is a corresponding author
  2. Chaitali Khan
  3. Virginia Folgado-Marco
  4. Jacky Chuen
  5. Panagiotis Moulos
  6. Nicholas E Baker  Is a corresponding author
  1. Albert Einstein College of Medicine, United States
  2. Alexander Fleming Biomedical Sciences Research Center, Greece

Abstract

Ribosomal Protein (Rp) gene haploinsufficiency affects translation rate, can lead to protein aggregation, and causes cell elimination by competition with wild type cells in mosaic tissues. We find that the modest changes in ribosomal subunit levels observed were insufficient for these effects, which all depended on the AT-hook, bZip domain protein Xrp1. Xrp1 reduced global translation through PERK-dependent phosphorylation of eIF2α. eIF2α phosphorylation was itself sufficient to enable cell competition of otherwise wild type cells, but through Xrp1 expression, not as the downstream effector of Xrp1. Unexpectedly, many other defects reducing ribosome biogenesis or function (depletion of TAF1B, eIF2, eIF4G, eIF6, eEF2, eEF1α1, or eIF5A), also increased eIF2α phosphorylation and enabled cell competition. This was also through the Xrp1 expression that was induced in these depletions. In the absence of Xrp1, translation differences between cells were not themselves sufficient to trigger cell competition. Xrp1 is shown here to be a sequence-specific transcription factor that regulates transposable elements as well as single-copy genes. Thus, Xrp1 is the master regulator that triggers multiple consequences of ribosomal stresses, and is the key instigator of cell competition.

Data availability

mRNA-Seq data were analyzed from datasets available from GEO with accession numbers GSE112864 and GSE124924. All other data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figure 1, Figure 2, Figure 2-figure supplement 1, Figure 8-figure supplement 4, Figure 10 and Figure 10-figure supplement 1.

The following previously published data sets were used

Article and author information

Author details

  1. Marianthi Kiparaki

    Genetics Department, Albert Einstein College of Medicine, Bronx, United States
    For correspondence
    kiparaki@fleming.gr
    Competing interests
    The authors declare that no competing interests exist.
  2. Chaitali Khan

    Genetics Department, Albert Einstein College of Medicine, Bronx, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Virginia Folgado-Marco

    Genetics Department, Albert Einstein College of Medicine, Bronx, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jacky Chuen

    Genetics Department, Albert Einstein College of Medicine, Bronx, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Panagiotis Moulos

    Alexander Fleming Biomedical Sciences Research Center, Vari, Greece
    Competing interests
    The authors declare that no competing interests exist.
  6. Nicholas E Baker

    Department of Genetics, Albert Einstein College of Medicine, Bronx, United States
    For correspondence
    nicholas.baker@einsteinmed.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4250-3488

Funding

National Institute of General Medical Sciences (research project grant GM120451)

  • Nicholas E Baker

NIH Office of the Director (instrumentation grant S10OD023591)

  • Nicholas E Baker

National Cancer Institute (Cancer Center Support Grant P30CA013330)

  • Nicholas E Baker

Ministry of Economy & Development, Greece (Research Infrastructure Grant Bio-Imaging GR MIS 5002755)

  • Marianthi Kiparaki

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Kiparaki et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,173
    views
  • 457
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Marianthi Kiparaki
  2. Chaitali Khan
  3. Virginia Folgado-Marco
  4. Jacky Chuen
  5. Panagiotis Moulos
  6. Nicholas E Baker
(2022)
The transcription factor Xrp1 orchestrates both reduced translation and cell competition upon defective ribosome assembly or function
eLife 11:e71705.
https://doi.org/10.7554/eLife.71705

Share this article

https://doi.org/10.7554/eLife.71705

Further reading

    1. Cell Biology
    Li Sun, Xuejin Chen ... Quan-wen Jin
    Research Article

    Mitotic anaphase onset is a key cellular process tightly regulated by multiple kinases. The involvement of mitogen-activated protein kinases (MAPKs) in this process has been established in Xenopus egg extracts. However, the detailed regulatory cascade remains elusive, and it is also unknown whether the MAPK-dependent mitotic regulation is evolutionarily conserved in the single-cell eukaryotic organisms such as fission yeast (Schizosaccharomyces pombe). Here, we show that two MAPKs in S. pombe indeed act in concert to restrain anaphase-promoting complex/cyclosome (APC/C) activity upon activation of the spindle assembly checkpoint (SAC). One MAPK, Pmk1, binds to and phosphorylates Slp1Cdc20, the co-activator of APC/C. Phosphorylation of Slp1Cdc20 by Pmk1, but not by Cdk1, promotes its subsequent ubiquitylation and degradation. Intriguingly, Pmk1-mediated phosphorylation event is also required to sustain SAC under environmental stress. Thus, our study establishes a new underlying molecular mechanism of negative regulation of APC/C by MAPK upon stress stimuli, and provides a previously unappreciated framework for regulation of anaphase entry in eukaryotic cells.

    1. Cancer Biology
    2. Cell Biology
    Alexandra Urbancokova, Terezie Hornofova ... Pavla Vasicova
    Research Article

    PML, a multifunctional protein, is crucial for forming PML-nuclear bodies involved in stress responses. Under specific conditions, PML associates with nucleolar caps formed after RNA polymerase I (RNAPI) inhibition, leading to PML-nucleolar associations (PNAs). This study investigates PNAs-inducing stimuli by exposing cells to various genotoxic stresses. We found that the most potent inducers of PNAs introduced topological stress and inhibited RNAPI. Doxorubicin, the most effective compound, induced double-strand breaks (DSBs) in the rDNA locus. PNAs co-localized with damaged rDNA, segregating it from active nucleoli. Cleaving the rDNA locus with I-PpoI confirmed rDNA damage as a genuine stimulus for PNAs. Inhibition of ATM, ATR kinases, and RAD51 reduced I-PpoI-induced PNAs, highlighting the importance of ATM/ATR-dependent nucleolar cap formation and homologous recombination (HR) in their triggering. I-PpoI-induced PNAs co-localized with rDNA DSBs positive for RPA32-pS33 but deficient in RAD51, indicating resected DNA unable to complete HR repair. Our findings suggest that PNAs form in response to persistent rDNA damage within the nucleolar cap, highlighting the interplay between PML/PNAs and rDNA alterations due to topological stress, RNAPI inhibition, and rDNA DSBs destined for HR. Cells with persistent PNAs undergo senescence, suggesting PNAs help avoid rDNA instability, with implications for tumorigenesis and aging.