An entropic safety catch controls Hepatitis C virus entry and antibody resistance

  1. Lenka Stejskal
  2. Mphatso D Kalemera
  3. Charlotte B Lewis
  4. Machaela Palor
  5. Lucas Walker
  6. Tina Daviter
  7. William D Lees
  8. David S Moss
  9. Myrto Kremyda-Vlachou
  10. Zisis Zisis Kozlakidis
  11. Giulia Gallo
  12. Dalan Bailey
  13. William Rosenberg
  14. Christopher JR Illingworth
  15. Adrian J Shepherd
  16. Joe Grove  Is a corresponding author
  1. University College London, United Kingdom
  2. University of Glasgow, United Kingdom
  3. Birkbeck, University of London, United Kingdom
  4. World Health Organization, France
  5. The Pirbright Institute, United Kingdom
  6. University of Cambridge, United Kingdom

Abstract

E1 and E2 (E1E2), the fusion proteins of Hepatitis C Virus (HCV), are unlike that of any other virus yet described, and the detailed molecular mechanisms of HCV entry/fusion remain unknown. Hypervariable region-1 (HVR-1) of E2 is a putative intrinsically disordered protein tail. Here, we demonstrate that HVR-1 has an autoinhibitory function that suppresses the activity of E1E2 on free virions; this is dependent on its conformational entropy. Thus, HVR-1 is akin to a safety catch that prevents premature triggering of E1E2 activity. Crucially, this mechanism is turned off by host receptor interactions at the cell surface to allow entry. Mutations that reduce conformational entropy in HVR-1, or genetic deletion of HVR-1, turn off the safety catch to generate hyper-reactive HCV that exhibits enhanced virus entry but is thermally unstable and acutely sensitive to neutralising antibodies. Therefore, the HVR-1 safety catch controls the efficiency of virus entry and maintains resistance to neutralising antibodies. This discovery provides an explanation for the ability of HCV to persist in the face of continual immune assault and represents a novel regulatory mechanism that is likely to be found in other viral fusion machinery.

Data availability

The underlying data for this manuscript are provided as a Source Data file. Full molecular dynamic simulation trajectories are available here: https://zenodo.org/record/4309544

Article and author information

Author details

  1. Lenka Stejskal

    Institute of Immunity and Transplantation, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Mphatso D Kalemera

    Institute of Immunity and Transplantation, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9461-1117
  3. Charlotte B Lewis

    University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Machaela Palor

    Institute of Immunity and Transplantation, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Lucas Walker

    Institute of Immunity and Transplantation, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Tina Daviter

    Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. William D Lees

    Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. David S Moss

    Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Myrto Kremyda-Vlachou

    Division of Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Zisis Zisis Kozlakidis

    International Agency for Research on Cancer, World Health Organization, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Giulia Gallo

    The Pirbright Institute, Pirbright, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Dalan Bailey

    Virus Programme, The Pirbright Institute, Guildford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5640-2266
  13. William Rosenberg

    Institute for Liver and Digestive Health, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2732-2304
  14. Christopher JR Illingworth

    Department of Genetics, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0030-2784
  15. Adrian J Shepherd

    Biological Sciences, Birkbeck, University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0194-8613
  16. Joe Grove

    University of Glasgow, Glasgow, United Kingdom
    For correspondence
    Joe.Grove@glasgow.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5390-7579

Funding

Wellcome Trust (107653/Z/15/Z)

  • Joe Grove

Medical Research Council (MC_UU_12014)

  • Joe Grove

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Fully consented blood samples (for IgG isolation) were collected from HCV+ patients under ethical approval: "Characterising and modifying immune responses in chronic viral hepatitis"; IRAS Number 43993; REC number 11/LO/0421.

Copyright

© 2022, Stejskal et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,148
    views
  • 244
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lenka Stejskal
  2. Mphatso D Kalemera
  3. Charlotte B Lewis
  4. Machaela Palor
  5. Lucas Walker
  6. Tina Daviter
  7. William D Lees
  8. David S Moss
  9. Myrto Kremyda-Vlachou
  10. Zisis Zisis Kozlakidis
  11. Giulia Gallo
  12. Dalan Bailey
  13. William Rosenberg
  14. Christopher JR Illingworth
  15. Adrian J Shepherd
  16. Joe Grove
(2022)
An entropic safety catch controls Hepatitis C virus entry and antibody resistance
eLife 11:e71854.
https://doi.org/10.7554/eLife.71854

Share this article

https://doi.org/10.7554/eLife.71854

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Axelle Amen, Randy Yoo ... Matthijs M Jore
    Research Article

    Circulating sexual stages of Plasmodium falciparum (Pf) can be transmitted from humans to mosquitoes, thereby furthering the spread of malaria in the population. It is well established that antibodies can efficiently block parasite transmission. In search for naturally acquired antibodies targets on sexual stages, we established an efficient method for target-agnostic single B cell activation followed by high-throughput selection of human monoclonal antibodies (mAbs) reactive to sexual stages of Pf in the form of gametes and gametocyte extracts. We isolated mAbs reactive against a range of Pf proteins including well-established targets Pfs48/45 and Pfs230. One mAb, B1E11K, was cross-reactive to various proteins containing glutamate-rich repetitive elements expressed at different stages of the parasite life cycle. A crystal structure of two B1E11K Fab domains in complex with its main antigen, RESA, expressed on asexual blood stages, showed binding of B1E11K to a repeating epitope motif in a head-to-head conformation engaging in affinity-matured homotypic interactions. Thus, this mode of recognition of Pf proteins, previously described only for Pf circumsporozoite protein (PfCSP), extends to other repeats expressed across various stages. The findings augment our understanding of immune-pathogen interactions to repeating elements of the Plasmodium parasite proteome and underscore the potential of the novel mAb identification method used to provide new insights into the natural humoral immune response against Pf.

    1. Microbiology and Infectious Disease
    Nicolas Flaugnatti, Loriane Bader ... Melanie Blokesch
    Research Article Updated

    The type VI secretion system (T6SS) is a sophisticated, contact-dependent nanomachine involved in interbacterial competition. To function effectively, the T6SS must penetrate the membranes of both attacker and target bacteria. Structures associated with the cell envelope, like polysaccharides chains, can therefore introduce spatial separation and steric hindrance, potentially affecting the efficacy of the T6SS. In this study, we examined how the capsular polysaccharide (CPS) of Acinetobacter baumannii affects T6SS’s antibacterial function. Our findings show that the CPS confers resistance against T6SS-mediated assaults from rival bacteria. Notably, under typical growth conditions, the presence of the surface-bound capsule also reduces the efficacy of the bacterium’s own T6SS. This T6SS impairment is further enhanced when CPS is overproduced due to genetic modifications or antibiotic treatment. Furthermore, we demonstrate that the bacterium adjusts the level of the T6SS inner tube protein Hcp according to its secretion capacity, by initiating a degradation process involving the ClpXP protease. Collectively, our findings contribute to a better understanding of the dynamic relationship between T6SS and CPS and how they respond swiftly to environmental challenges.