An entropic safety catch controls Hepatitis C virus entry and antibody resistance

  1. Lenka Stejskal
  2. Mphatso D Kalemera
  3. Charlotte B Lewis
  4. Machaela Palor
  5. Lucas Walker
  6. Tina Daviter
  7. William D Lees
  8. David S Moss
  9. Myrto Kremyda-Vlachou
  10. Zisis Zisis Kozlakidis
  11. Giulia Gallo
  12. Dalan Bailey
  13. William Rosenberg
  14. Christopher JR Illingworth
  15. Adrian J Shepherd
  16. Joe Grove  Is a corresponding author
  1. University College London, United Kingdom
  2. University of Glasgow, United Kingdom
  3. Birkbeck, University of London, United Kingdom
  4. World Health Organization, France
  5. The Pirbright Institute, United Kingdom
  6. University of Cambridge, United Kingdom

Abstract

E1 and E2 (E1E2), the fusion proteins of Hepatitis C Virus (HCV), are unlike that of any other virus yet described, and the detailed molecular mechanisms of HCV entry/fusion remain unknown. Hypervariable region-1 (HVR-1) of E2 is a putative intrinsically disordered protein tail. Here, we demonstrate that HVR-1 has an autoinhibitory function that suppresses the activity of E1E2 on free virions; this is dependent on its conformational entropy. Thus, HVR-1 is akin to a safety catch that prevents premature triggering of E1E2 activity. Crucially, this mechanism is turned off by host receptor interactions at the cell surface to allow entry. Mutations that reduce conformational entropy in HVR-1, or genetic deletion of HVR-1, turn off the safety catch to generate hyper-reactive HCV that exhibits enhanced virus entry but is thermally unstable and acutely sensitive to neutralising antibodies. Therefore, the HVR-1 safety catch controls the efficiency of virus entry and maintains resistance to neutralising antibodies. This discovery provides an explanation for the ability of HCV to persist in the face of continual immune assault and represents a novel regulatory mechanism that is likely to be found in other viral fusion machinery.

Data availability

The underlying data for this manuscript are provided as a Source Data file. Full molecular dynamic simulation trajectories are available here: https://zenodo.org/record/4309544

Article and author information

Author details

  1. Lenka Stejskal

    Institute of Immunity and Transplantation, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Mphatso D Kalemera

    Institute of Immunity and Transplantation, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9461-1117
  3. Charlotte B Lewis

    University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Machaela Palor

    Institute of Immunity and Transplantation, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Lucas Walker

    Institute of Immunity and Transplantation, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Tina Daviter

    Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. William D Lees

    Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. David S Moss

    Institute of Structural and Molecular Biology, Birkbeck, University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Myrto Kremyda-Vlachou

    Division of Infection and Immunity, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Zisis Zisis Kozlakidis

    International Agency for Research on Cancer, World Health Organization, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Giulia Gallo

    The Pirbright Institute, Pirbright, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Dalan Bailey

    Virus Programme, The Pirbright Institute, Guildford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5640-2266
  13. William Rosenberg

    Institute for Liver and Digestive Health, University College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2732-2304
  14. Christopher JR Illingworth

    Department of Genetics, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0030-2784
  15. Adrian J Shepherd

    Biological Sciences, Birkbeck, University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0194-8613
  16. Joe Grove

    University of Glasgow, Glasgow, United Kingdom
    For correspondence
    Joe.Grove@glasgow.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5390-7579

Funding

Wellcome Trust (107653/Z/15/Z)

  • Joe Grove

Medical Research Council (MC_UU_12014)

  • Joe Grove

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Fully consented blood samples (for IgG isolation) were collected from HCV+ patients under ethical approval: "Characterising and modifying immune responses in chronic viral hepatitis"; IRAS Number 43993; REC number 11/LO/0421.

Copyright

© 2022, Stejskal et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,195
    views
  • 250
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lenka Stejskal
  2. Mphatso D Kalemera
  3. Charlotte B Lewis
  4. Machaela Palor
  5. Lucas Walker
  6. Tina Daviter
  7. William D Lees
  8. David S Moss
  9. Myrto Kremyda-Vlachou
  10. Zisis Zisis Kozlakidis
  11. Giulia Gallo
  12. Dalan Bailey
  13. William Rosenberg
  14. Christopher JR Illingworth
  15. Adrian J Shepherd
  16. Joe Grove
(2022)
An entropic safety catch controls Hepatitis C virus entry and antibody resistance
eLife 11:e71854.
https://doi.org/10.7554/eLife.71854

Share this article

https://doi.org/10.7554/eLife.71854

Further reading

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Saugat Poudel, Jason Hyun ... Bernhard O Palsson
    Research Article

    The Staphylococcus aureus clonal complex 8 (CC8) is made up of several subtypes with varying levels of clinical burden; from community-associated methicillin-resistant S. aureus USA300 strains to hospital-associated (HA-MRSA) USA500 strains and ancestral methicillin-susceptible (MSSA) strains. This phenotypic distribution within a single clonal complex makes CC8 an ideal clade to study the emergence of mutations important for antibiotic resistance and community spread. Gene-level analysis comparing USA300 against MSSA and HA-MRSA strains have revealed key horizontally acquired genes important for its rapid spread in the community. However, efforts to define the contributions of point mutations and indels have been confounded by strong linkage disequilibrium resulting from clonal propagation. To break down this confounding effect, we combined genetic association testing with a model of the transcriptional regulatory network (TRN) to find candidate mutations that may have led to changes in gene regulation. First, we used a De Bruijn graph genome-wide association study to enrich mutations unique to the USA300 lineages within CC8. Next, we reconstructed the TRN by using independent component analysis on 670 RNA-sequencing samples from USA300 and non-USA300 CC8 strains which predicted several genes with strain-specific altered expression patterns. Examination of the regulatory region of one of the genes enriched by both approaches, isdH, revealed a 38-bp deletion containing a Fur-binding site and a conserved single-nucleotide polymorphism which likely led to the altered expression levels in USA300 strains. Taken together, our results demonstrate the utility of reconstructed TRNs to address the limits of genetic approaches when studying emerging pathogenic strains.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Malika Hale, Kennidy K Takehara ... Marion Pepper
    Research Article

    Pseudomonas aeruginosa (PA) is an opportunistic, frequently multidrug-resistant pathogen that can cause severe infections in hospitalized patients. Antibodies against the PA virulence factor, PcrV, protect from death and disease in a variety of animal models. However, clinical trials of PcrV-binding antibody-based products have thus far failed to demonstrate benefit. Prior candidates were derivations of antibodies identified using protein-immunized animal systems and required extensive engineering to optimize binding and/or reduce immunogenicity. Of note, PA infections are common in people with cystic fibrosis (pwCF), who are generally believed to mount normal adaptive immune responses. Here, we utilized a tetramer reagent to detect and isolate PcrV-specific B cells in pwCF and, via single-cell sorting and paired-chain sequencing, identified the B cell receptor (BCR) variable region sequences that confer PcrV-specificity. We derived multiple high affinity anti-PcrV monoclonal antibodies (mAbs) from PcrV-specific B cells across three donors, including mAbs that exhibit potent anti-PA activity in a murine pneumonia model. This robust strategy for mAb discovery expands what is known about PA-specific B cells in pwCF and yields novel mAbs with potential for future clinical use.