IRAK1-dependent Regnase-1-14-3-3 complex formation controls Regnase-1-mediated mRNA decay

Abstract

Regnase-1 is an endoribonuclease crucial for controlling inflammation by degrading mRNAs encoding cytokines and inflammatory mediators in mammals. However, it is unclear how Regnase-1-mediated mRNA decay is controlled in interleukin (IL)-1β- or Toll-like receptor (TLR) ligand-stimulated cells. Here, by analyzing the Regnase-1 interactome, we found that IL-1β or TLR stimulus dynamically induced the formation of Regnase-1-β-transducin repeat-containing protein (βTRCP) complex. Importantly, we also uncovered a novel interaction between Regnase-1 and 14-3-3 in both mouse and human cells. In IL-1R/TLR-stimulated cells, the Regnase-1-14-3-3 interaction is mediated by IRAK1 through a previously uncharacterized C-terminal structural domain. Phosphorylation of Regnase-1 at S494 and S513 is critical for Regnase-1-14-3-3 interaction, while a different set of phosphorylation sites of Regnase-1 is known to be required for the recognition by βTRCP and proteasome-mediated degradation. We found that Regnase-1-14-3-3 and Regnase-1-βTRCP interactions are not sequential events. Rather, 14-3-3 protects Regnase-1 from βTRCP-mediated degradation. On the other hand, 14-3-3 abolishes Regnase-1-mediated mRNA decay by inhibiting Regnase-1-mRNA association. In addition, nuclear-cytoplasmic shuttling of Regnase-1 is abrogated by 14-3-3 interaction. Taken together, the results suggest that a novel inflammation-induced interaction of 14-3-3 with Regnase-1 stabilizes inflammatory mRNAs by sequestering Regnase-1 in the cytoplasm to prevent mRNA recognition.

Data availability

Mass spectrometry data (PXD026561) is available athttps://repository.jpostdb.org/preview/39625605260bf241f327a9Access key: 8668RNA sequencing data (GSE180028) is available athttps://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE180028Secure token: urknaskkjjsflsj

The following data sets were generated

Article and author information

Author details

  1. Kotaro Akaki

    Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0059-3291
  2. Kosuke Ogata

    Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0634-3990
  3. Yuhei Yamauchi

    Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Noriki Iwai

    Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Ka Man Tse

    Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Fabian Hia

    Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7209-4312
  7. Atsushi Mochizuki

    Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Yasushi Ishihama

    Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7714-203X
  9. Takashi Mino

    Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9562-008X
  10. Osamu Takeuchi

    Kyoto University, Kyoto, Japan
    For correspondence
    otake@mfour.med.kyoto-u.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1260-6232

Funding

Japan Society for the Promotion of Science (19H03488)

  • Osamu Takeuchi

Japan Agency for Medical Research and Development (JP20gm4010002)

  • Osamu Takeuchi

Japan Society for the Promotion of Science (19H03488)

  • Takashi Mino

Japan Society for the Promotion of Science (Core-to-Core Program)

  • Osamu Takeuchi

Japan Society for the Promotion of Science (221S0002)

  • Takashi Mino

Japan Society for the Promotion of Science (16H06279)

  • Takashi Mino

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were conducted in compliance with the guidelines of the Kyoto University animal experimentation committee. (Approval number: MedKyo21057)

Reviewing Editor

  1. Nahum Sonenberg, McGill University, Canada

Publication history

  1. Received: July 6, 2021
  2. Preprint posted: July 15, 2021 (view preprint)
  3. Accepted: October 8, 2021
  4. Accepted Manuscript published: October 12, 2021 (version 1)
  5. Accepted Manuscript updated: October 13, 2021 (version 2)
  6. Version of Record published: October 28, 2021 (version 3)

Copyright

© 2021, Akaki et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,463
    Page views
  • 285
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kotaro Akaki
  2. Kosuke Ogata
  3. Yuhei Yamauchi
  4. Noriki Iwai
  5. Ka Man Tse
  6. Fabian Hia
  7. Atsushi Mochizuki
  8. Yasushi Ishihama
  9. Takashi Mino
  10. Osamu Takeuchi
(2021)
IRAK1-dependent Regnase-1-14-3-3 complex formation controls Regnase-1-mediated mRNA decay
eLife 10:e71966.
https://doi.org/10.7554/eLife.71966
  1. Further reading

Further reading

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Harry Kane, Nelson M LaMarche ... Lydia Lynch
    Research Article

    Innate T cells, including CD1d-restricted invariant natural killer T (iNKT) cells, are characterized by their rapid activation in response to non-peptide antigens, such as lipids. While the transcriptional profiles of naive, effector and memory adaptive T cells have been well studied, less is known about transcriptional regulation of different iNKT cell activation states. Here, using single cell RNA-sequencing, we performed longitudinal profiling of activated murine iNKT cells, generating a transcriptomic atlas of iNKT cell activation states. We found that transcriptional signatures of activation are highly conserved among heterogeneous iNKT cell populations, including NKT1, NKT2 and NKT17 subsets, and human iNKT cells. Strikingly, we found that regulatory iNKT cells, such as adipose iNKT cells, undergo blunted activation, and display constitutive enrichment of memory-like cMAF+ and KLRG1+ populations. Moreover, we identify a conserved cMAF-associated transcriptional network among NKT10 cells, providing novel insights into the biology of regulatory and antigen experienced iNKT cells.

    1. Cancer Biology
    2. Immunology and Inflammation
    Lei Yang, Xichen Dong ... Zhenjun Wang
    Research Article

    Efficacy of immunotherapy is limited in patients with colorectal cancer (CRC) because high expression of tumor-derived transforming growth factor (TGF)-β pathway molecules and interferon (IFN)-stimulated genes (ISGs) promotes tumor immune evasion. Here, we identified a long noncoding RNA (lncRNA), VPS9D1-AS1, which was located in ribosomes and amplified TGF-β signaling and ISG expression. We show that high expression of VPS9D1-AS1 was negatively associated with T lymphocyte infiltration in two independent cohorts of CRC. VPS9D1-AS1 served as a scaffolding lncRNA by binding with ribosome protein S3 (RPS3) to increase the translation of TGF-β, TGFBR1, and SMAD1/5/9. VPS9D1-AS1 knockout downregulated OAS1, an ISG gene, which further reduced IFNAR1 levels in tumor cells. Conversely, tumor cells overexpressing VPS9D1-AS1 were resistant to CD8+ T cell killing and lowered IFNAR1 expression in CD8+ T cells. In a conditional overexpression mouse model, VPS9D1-AS1 enhanced tumorigenesis and suppressed the infiltration of CD8+ T cells. Treating tumor-bearing mice with antisense oligonucleotide drugs targeting VPS9D1-AS1 significantly suppressed tumor growth. Our findings indicate that the tumor-derived VPS9D1-AS1/TGF-β/ISG signaling cascade promotes tumor growth and enhances immune evasion and may thus serve as a potential therapeutic target for CRC.