Abstract

Regnase-1 is an endoribonuclease crucial for controlling inflammation by degrading mRNAs encoding cytokines and inflammatory mediators in mammals. However, it is unclear how Regnase-1-mediated mRNA decay is controlled in interleukin (IL)-1β- or Toll-like receptor (TLR) ligand-stimulated cells. Here, by analyzing the Regnase-1 interactome, we found that IL-1β or TLR stimulus dynamically induced the formation of Regnase-1-β-transducin repeat-containing protein (βTRCP) complex. Importantly, we also uncovered a novel interaction between Regnase-1 and 14-3-3 in both mouse and human cells. In IL-1R/TLR-stimulated cells, the Regnase-1-14-3-3 interaction is mediated by IRAK1 through a previously uncharacterized C-terminal structural domain. Phosphorylation of Regnase-1 at S494 and S513 is critical for Regnase-1-14-3-3 interaction, while a different set of phosphorylation sites of Regnase-1 is known to be required for the recognition by βTRCP and proteasome-mediated degradation. We found that Regnase-1-14-3-3 and Regnase-1-βTRCP interactions are not sequential events. Rather, 14-3-3 protects Regnase-1 from βTRCP-mediated degradation. On the other hand, 14-3-3 abolishes Regnase-1-mediated mRNA decay by inhibiting Regnase-1-mRNA association. In addition, nuclear-cytoplasmic shuttling of Regnase-1 is abrogated by 14-3-3 interaction. Taken together, the results suggest that a novel inflammation-induced interaction of 14-3-3 with Regnase-1 stabilizes inflammatory mRNAs by sequestering Regnase-1 in the cytoplasm to prevent mRNA recognition.

Data availability

Mass spectrometry data (PXD026561) is available athttps://repository.jpostdb.org/entry/JPST001201RNA sequencing data (GSE180028) is available athttp://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE180028j

The following data sets were generated

Article and author information

Author details

  1. Kotaro Akaki

    Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0059-3291
  2. Kosuke Ogata

    Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0634-3990
  3. Yuhei Yamauchi

    Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Noriki Iwai

    Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Ka Man Tse

    Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Fabian Hia

    Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7209-4312
  7. Atsushi Mochizuki

    Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Yasushi Ishihama

    Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7714-203X
  9. Takashi Mino

    Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9562-008X
  10. Osamu Takeuchi

    Kyoto University, Kyoto, Japan
    For correspondence
    otake@mfour.med.kyoto-u.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1260-6232

Funding

Japan Society for the Promotion of Science (19H03488)

  • Osamu Takeuchi

Japan Agency for Medical Research and Development (JP20gm4010002)

  • Osamu Takeuchi

Japan Society for the Promotion of Science (19H03488)

  • Takashi Mino

Japan Society for the Promotion of Science (Core-to-Core Program)

  • Osamu Takeuchi

Japan Society for the Promotion of Science (221S0002)

  • Takashi Mino

Japan Society for the Promotion of Science (16H06279)

  • Takashi Mino

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were conducted in compliance with the guidelines of the Kyoto University animal experimentation committee. (Approval number: MedKyo21057)

Copyright

© 2021, Akaki et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,587
    views
  • 399
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kotaro Akaki
  2. Kosuke Ogata
  3. Yuhei Yamauchi
  4. Noriki Iwai
  5. Ka Man Tse
  6. Fabian Hia
  7. Atsushi Mochizuki
  8. Yasushi Ishihama
  9. Takashi Mino
  10. Osamu Takeuchi
(2021)
IRAK1-dependent Regnase-1-14-3-3 complex formation controls Regnase-1-mediated mRNA decay
eLife 10:e71966.
https://doi.org/10.7554/eLife.71966

Share this article

https://doi.org/10.7554/eLife.71966

Further reading

    1. Immunology and Inflammation
    David P Turicek, Xiaoxiao Wan
    Insight

    The epigenome of T follicular helper cells prepares them for conversion into type 1 regulatory T cells.

    1. Immunology and Inflammation
    Shijie Wen, Hiroshi Arakawa ... Ikumi Tamai
    Research Article

    Excessive elevation or reduction of soluble uric acid (sUA) levels has been linked to some of pathological states, raising another subject that sUA at physiological levels may be essential for the maintenance of health. Yet, the fundamental physiological functions and molecular targets of sUA remain largely unknown. Using enzyme assays and in vitro and in vivo metabolic assays, we demonstrate that sUA directly inhibits the hydrolase and cyclase activities of CD38 via a reversible non-competitive mechanism, thereby limiting nicotinamide adenine dinucleotide (NAD+) degradation. CD38 inhibition is restricted to sUA in purine metabolism, and a structural comparison using methyl analogs of sUA such as caffeine metabolites shows that 1,3-dihydroimidazol-2-one is the main functional group. Moreover, sUA at physiological levels prevents crude lipopolysaccharide (cLPS)-induced systemic inflammation and monosodium urate (MSU) crystal-induced peritonitis in mice by interacting with CD38. Together, this study unveils an unexpected physiological role for sUA in controlling NAD+ availability and innate immunity through CD38 inhibition, providing a new perspective on sUA homeostasis and purine metabolism.