1. Immunology and Inflammation
Download icon

IRAK1-dependent Regnase-1-14-3-3 complex formation controls Regnase-1-mediated mRNA decay

Research Article
  • Cited 1
  • Views 983
  • Annotations
Cite this article as: eLife 2021;10:e71966 doi: 10.7554/eLife.71966

Abstract

Regnase-1 is an endoribonuclease crucial for controlling inflammation by degrading mRNAs encoding cytokines and inflammatory mediators in mammals. However, it is unclear how Regnase-1-mediated mRNA decay is controlled in interleukin (IL)-1β- or Toll-like receptor (TLR) ligand-stimulated cells. Here, by analyzing the Regnase-1 interactome, we found that IL-1β or TLR stimulus dynamically induced the formation of Regnase-1-β-transducin repeat-containing protein (βTRCP) complex. Importantly, we also uncovered a novel interaction between Regnase-1 and 14-3-3 in both mouse and human cells. In IL-1R/TLR-stimulated cells, the Regnase-1-14-3-3 interaction is mediated by IRAK1 through a previously uncharacterized C-terminal structural domain. Phosphorylation of Regnase-1 at S494 and S513 is critical for Regnase-1-14-3-3 interaction, while a different set of phosphorylation sites of Regnase-1 is known to be required for the recognition by βTRCP and proteasome-mediated degradation. We found that Regnase-1-14-3-3 and Regnase-1-βTRCP interactions are not sequential events. Rather, 14-3-3 protects Regnase-1 from βTRCP-mediated degradation. On the other hand, 14-3-3 abolishes Regnase-1-mediated mRNA decay by inhibiting Regnase-1-mRNA association. In addition, nuclear-cytoplasmic shuttling of Regnase-1 is abrogated by 14-3-3 interaction. Taken together, the results suggest that a novel inflammation-induced interaction of 14-3-3 with Regnase-1 stabilizes inflammatory mRNAs by sequestering Regnase-1 in the cytoplasm to prevent mRNA recognition.

Data availability

Mass spectrometry data (PXD026561) is available athttps://repository.jpostdb.org/entry/JPST001201RNA sequencing data (GSE180028) is available athttp://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE180028j

The following data sets were generated

Article and author information

Author details

  1. Kotaro Akaki

    Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0059-3291
  2. Kosuke Ogata

    Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0634-3990
  3. Yuhei Yamauchi

    Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Noriki Iwai

    Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Ka Man Tse

    Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  6. Fabian Hia

    Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7209-4312
  7. Atsushi Mochizuki

    Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  8. Yasushi Ishihama

    Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7714-203X
  9. Takashi Mino

    Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9562-008X
  10. Osamu Takeuchi

    Kyoto University, Kyoto, Japan
    For correspondence
    otake@mfour.med.kyoto-u.ac.jp
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1260-6232

Funding

Japan Society for the Promotion of Science (19H03488)

  • Osamu Takeuchi

Japan Agency for Medical Research and Development (JP20gm4010002)

  • Osamu Takeuchi

Japan Society for the Promotion of Science (19H03488)

  • Takashi Mino

Japan Society for the Promotion of Science (Core-to-Core Program)

  • Osamu Takeuchi

Japan Society for the Promotion of Science (221S0002)

  • Takashi Mino

Japan Society for the Promotion of Science (16H06279)

  • Takashi Mino

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were conducted in compliance with the guidelines of the Kyoto University animal experimentation committee. (Approval number: MedKyo21057)

Reviewing Editor

  1. Nahum Sonenberg, McGill University, Canada

Publication history

  1. Received: July 6, 2021
  2. Preprint posted: July 15, 2021 (view preprint)
  3. Accepted: October 8, 2021
  4. Accepted Manuscript published: October 12, 2021 (version 1)
  5. Accepted Manuscript updated: October 13, 2021 (version 2)
  6. Version of Record published: October 28, 2021 (version 3)

Copyright

© 2021, Akaki et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 983
    Page views
  • 187
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Immunology and Inflammation
    2. Neuroscience
    Sabela Rodríguez-Lorenzo et al.
    Research Article

    Multiple sclerosis (MS) is a chronic demyelinating disease characterised by immune cell infiltration resulting in lesions that preferentially affect periventricular areas of the brain. Despite research efforts to define the role of various immune cells in MS pathogenesis, the focus has been on a few immune cell populations while full-spectrum analysis, encompassing others such as natural killer (NK) cells, has not been performed. Here, we used single-cell mass cytometry (CyTOF) to profile the immune landscape of brain periventricular areas - septum and choroid plexus – and of the circulation from donors with MS, dementia and controls without neurological disease. Using a 37-marker panel, we revealed the infiltration of T cells and antibody-secreting cells in periventricular brain regions and identified a novel NK cell signature specific to MS. CD56bright NK cells were accumulated in the septum of MS donors and displayed an activated and migratory phenotype, similar to that of CD56bright NK cells in the circulation. We validated this signature by multiplex immunohistochemistry and found that the number of NK cells with high expression of granzyme K, typical of the CD56bright subset, was increased in both periventricular lesions and the choroid plexus of donors with MS. Together, our multi-tissue single-cell data shows that CD56bright NK cells accumulate in the periventricular brain regions of MS patients, bringing NK cells back to the spotlight of MS pathology.

    1. Immunology and Inflammation
    2. Stem Cells and Regenerative Medicine
    Boyang Ren et al.
    Research Article

    Thymic homing of hematopoietic progenitor cells (HPCs) is tightly regulated for proper T cell development. Previously we have identified a subset of specialized thymic portal endothelial cells (TPECs), which is important for thymic HPC homing. However, the underlying molecular mechanism still remains unknown. Here, we found that signal regulatory protein alpha (SIRPα) is preferentially expressed on TPECs. Disruption of CD47-SIRPα signaling in mice resulted in reduced number of thymic early T cell progenitors (ETPs), impaired thymic HPC homing, and altered early development of thymocytes. Mechanistically, Sirpa-deficient ECs and Cd47-deficient bone marrow progenitor cells or T lymphocytes demonstrated impaired transendothelial migration (TEM). Specifically, SIRPα intracellular ITIM motif-initiated downstream signaling in ECs was found to be required for TEM in an SHP2- and Src-dependent manner. Furthermore, CD47 signaling from migrating cells and SIRPα intracellular signaling were found to be required for VE-cadherin endocytosis in ECs. Thus, our study reveals a novel role of endothelial SIRPα signaling for thymic HPC homing for T cell development.