Mortality: A comprehensive look at the COVID-19 pandemic death toll

COVID-19 ‘excess mortality’ has been estimated for more than 100 countries and shows a dramatic death toll in many countries.
  1. Lone Simonsen  Is a corresponding author
  2. Cecile Viboud
  1. PandemiX Center, Institute of Science and Environment, Roskilde University, Denmark
  2. Fogarty International Center, National Institutes of Health, United States

More than 18 months into the pandemic, the exact death toll of COVID-19 remains elusive. There are several ways to assess how many people have died in a pandemic, each with their advantages and disadvantages. Official national reports of COVID-19 deaths are useful, but their accuracy depends on the level of testing in that country and may underestimate the true death toll. Combining mortality rates with estimates of the fraction of people in a country who have been infected provides a better estimate, but requires serological studies of antibody prevalence that are not widely available. A tried-and-trusted approach to calculate the death toll is to estimate 'excess mortality' by comparing the total number of deaths during the pandemic period with a baseline level of deaths before the pandemic. This indirect statistical approach does not depend on testing strategy.

A recent study, based on data from 29 high-income countries during 2020, reported substantial excess mortality in some Eastern European countries and no excess mortality in New Zealand, Norway or Denmark (Islam et al., 2021). Now, in eLife, Ariel Karlinsky (Hebrew University) and Dmitry Kobak (University of Tübingen) report the results of an excess mortality study that extends to the summer of 2021 and more than 100 countries, and provides a first look at the substantial pandemic death toll in several middle-income countries (Karlinsky and Kobak, 2021). Excess mortality depends on infection rates, population demographics, COVID-19 interventions and vaccine coverage, and reflects the unique pandemic experience of different countries.

Karlinsky and Kobak compiled a unique database of weekly, monthly or quarterly deaths in 103 countries, including five years of pre-pandemic baselines for most of these. In some of the worst-affected countries, mortality in 2020 and the first half of 2021 exceeded the baseline level by between 50% and 150% (e.g., Peru and Mexico), and in absolute terms, more than 0.4% of the population died of COVID-19 in some countries (e.g., Peru and Bulgaria). For Peru, the most severely affected country, the effects of a poor healthcare system may have been exacerbated by strict lockdowns that fostered severe economic restraints and mass migration (Taylor, 2021). Meanwhile, countries like Japan, Finland, the Philippines, and South Korea had negative excess mortality, reflecting excellent pandemic control, which resulted in a modest COVID-19 death toll and a near absence of influenza deaths during the pandemic. For such countries, the official COVID-19 death count is more accurate than excess mortality estimates. The impact of COVID-19 was intermediate in South Africa and Russia, with mortality about 30% higher than the baseline and a death rate of about 0.3%.

Excess mortality reflects the sum of positive and negative changes from baseline years, meaning that some of the changes observed may not be directly related to the COVID-19 pandemic itself, but due instead to interventions. For example, social distancing measures decrease circulation and mortality due to influenza and other non-SARS-CoV-2 pathogens, but other factors – such as overwhelmed healthcare systems, violence and drug overdoses – increase mortality. However, Karlinsky and Kobak convincingly argue that most excess deaths reflect the direct consequences of COVID-19 (see also the study on excess death in Russia: Kobak, 2021).

Karlinsky and Kobak refrain from calculating the global mortality burden of COVID-19. Such an estimate would be heavily biased due to the lack of data for populous countries like China and India, and because many low-income countries in Asia and Africa cannot participate due to a lack of timely national vital statistics. Such gaps in the data can impact a global mortality estimate greatly: for example, one recent study computed a likely toll of about 4 million COVID-19 deaths in India, which is about 10 times higher than official death counts (Anand et al., 2021). Karlinsky and Kobak estimate that for the 103 countries they collected data for, the true number of COVID-19 deaths is on average 1.4 fold greater (range between 1 to 100-fold) than reported.

Global mortality estimates for past influenza pandemics range from 0.4 million deaths for the 2009 pandemic to 75 million deaths for the 1918 pandemic (Murray et al., 2006; Simonsen et al., 2013; Viboud et al., 2016; all adjusted to 2020 population, see Table 1). Globally, 4.3 million deaths due to SARS-CoV-2 have been reported as of August 11, 2021: this corresponds to about 6 million deaths when applying the mean underreporting factor of 1.4 reported by Karlinsky and Kobak. This is clearly a low global estimate due to missing data from key countries and the continued circulation of new SARS-CoV-2 variants in 2021 and in the coming years. Even so, the COVID-19 pandemic is already deadlier than the 1957 pandemic, but has nowhere near the death toll of the pandemic of 1918.

Table 1
Estimates of global excess mortality for five pandemics.

Estimates of the global per capita excess mortality rate (row 2), the number of global excess deaths adjusted to 2020 population (row 3), and the mean age at death (row 4) for the ongoing COVID-19 pandemic (column 2) and the influenza pandemics of 2009, 1968, 1957 and 1918 (columns 3–6). Each study used different statistical models, assumptions and country data. The levels of mortality in non-participating countries were estimated using various extrapolation/imputation strategies.

COVID-19120092196831957419185
Per capita excess mortality rate>0.08%60.005%0.03%0.04%1.0%
Global excess deaths adjusted to 2020 population>6 million60.4 million2.2 million3.1 million75 million
Mean age at death (years)70737626527
  1. 1Karlinsky and Kobak, 2021. 103 wealthier countries; an under-reporting factor of 1.4 was applied.

    2Simonsen et al., 2013. Based on 2009 data from 20 countries covering approximately 35% of the world population and using an allcause imputation method that uses 10 factors. Estimates based on 300,000–400,000 pandemic excess deaths from all causes.

  2. 3CDC, 2019. Based on 1 million excess deaths in the US, UK, Canada, Australia and France.

    4Viboud et al., 2016. For the entire pandemic period (1957–1959), using data from 39 countries; extrapolated globally based on GDP, latitude and baseline death rate.

  3. 5Murray et al., 2006. 13 countries or regions for the entire pandemic period between 1918–1920; allcause mortality; extrapolated by GDP, latitude; (62 million deaths in 2004 population).

    Based on the official COVID-19 global death toll as of 11/8/2021 multiplied by 1.4 to allow account for underreporting (Karlinsky and Kobak, 2021). This is an underestimate as the 103 participating countries in this study are wealthier, but harder-hit populous countries like India (which may account for approximately 4 million excess deaths) are not included. Also, the burden is incomplete because the COVID-19 pandemic is not yet over.

  4. 7The COVID-19 pandemic mainly kills the elderly, but the exact mean age of deaths is not currently known. Mean age at death is likely lower in middle-income countries: for example, it is reported to be 60 years in South Africa (Guimarães et al., 2021; Statistics South Africa, 2020).

Importantly, these historical comparisons do not consider long-term decreases in baseline mortality due to better healthcare, longer life expectancy and other factors, which make the COVID-19 pandemic stand out sharply against low background mortality levels. Another key consideration is age: the mean age of people who die of COVID-19 is around 70 years, similar to the 1957 pandemic, but dramatically higher than the 1918 and 2009 pandemics (Table 1). The mean age at death is likely lower for less wealthy countries with younger populations (e.g., 60 years in South Africa; Table 1). Mortality age patterns are critically needed for estimating years of life lost, which is an alternative metric used to understand and compare pandemic death tolls (Viboud et al., 2010; Pifarré I Arolas et al., 2021).

We applaud Karlinsky and Kobak’s efforts to compile, release and update timely mortality data in over 100 countries – a major achievement that would have been impossible even 10 years ago. This is a data revolution that parallels that seen in vaccine development and pathogen sequencing. Future work should focus on including incomplete or subnational mortality data from low- and middle-income countries in Asia, the Middle East and Africa (United Nations) to begin filling the data gap. The database should also be expanded to include age breakdowns whenever available, as in other international mortality databases (such as the Human Mortality Database, COVerAGE-DB, and EuroMOMO). Going forward, we call for resources to maintain these valuable databases in the post-SARS-CoV-2 era, as these can uniquely monitor the complete impact of the COVID-19 pandemic. These databases can also be used to track the death toll of increasingly frequent heat waves and other effects of climate change, and help us be ready for future pandemics.

Note

Disclaimer: This article does not necessarily represent the views of the NIH or the US government.

References

Article and author information

Author details

  1. Lone Simonsen

    Lone Simonsen is in the PandemiX Center, Institute of Science and Environment, Roskilde University, Roskilde, Denmark

    For correspondence
    lonesimo@ruc.dk
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1535-8526
  2. Cecile Viboud

    Cecile Viboud is in the Fogarty International Center, National Institutes of Health, Bethesda, United States

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3243-4711

Publication history

  1. Version of Record published:

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 8,844
    views
  • 402
    downloads
  • 38
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lone Simonsen
  2. Cecile Viboud
(2021)
Mortality: A comprehensive look at the COVID-19 pandemic death toll
eLife 10:e71974.
https://doi.org/10.7554/eLife.71974

Further reading

    1. Epidemiology and Global Health
    2. Genetics and Genomics
    Rashmi Sukumaran, Achuthsankar S Nair, Moinak Banerjee
    Research Article

    Burden of stroke differs by region, which could be attributed to differences in comorbid conditions and ethnicity. Genomewide variation acts as a proxy marker for ethnicity, and comorbid conditions. We present an integrated approach to understand this variation by considering prevalence and mortality rates of stroke and its comorbid risk for 204 countries from 2009 to 2019, and Genome-wide association studies (GWAS) risk variant for all these conditions. Global and regional trend analysis of rates using linear regression, correlation, and proportion analysis, signifies ethnogeographic differences. Interestingly, the comorbid conditions that act as risk drivers for stroke differed by regions, with more of metabolic risk in America and Europe, in contrast to high systolic blood pressure in Asian and African regions. GWAS risk loci of stroke and its comorbid conditions indicate distinct population stratification for each of these conditions, signifying for population-specific risk. Unique and shared genetic risk variants for stroke, and its comorbid and followed up with ethnic-specific variation can help in determining regional risk drivers for stroke. Unique ethnic-specific risk variants and their distinct patterns of linkage disequilibrium further uncover the drivers for phenotypic variation. Therefore, identifying population- and comorbidity-specific risk variants might help in defining the threshold for risk, and aid in developing population-specific prevention strategies for stroke.

    1. Epidemiology and Global Health
    2. Evolutionary Biology
    Renan Maestri, Benoît Perez-Lamarque ... Hélène Morlon
    Research Article

    Several coronaviruses infect humans, with three, including the SARS-CoV2, causing diseases. While coronaviruses are especially prone to induce pandemics, we know little about their evolutionary history, host-to-host transmissions, and biogeography. One of the difficulties lies in dating the origination of the family, a particularly challenging task for RNA viruses in general. Previous cophylogenetic tests of virus-host associations, including in the Coronaviridae family, have suggested a virus-host codiversification history stretching many millions of years. Here, we establish a framework for robustly testing scenarios of ancient origination and codiversification versus recent origination and diversification by host switches. Applied to coronaviruses and their mammalian hosts, our results support a scenario of recent origination of coronaviruses in bats and diversification by host switches, with preferential host switches within mammalian orders. Hotspots of coronavirus diversity, concentrated in East Asia and Europe, are consistent with this scenario of relatively recent origination and localized host switches. Spillovers from bats to other species are rare, but have the highest probability to be towards humans than to any other mammal species, implicating humans as the evolutionary intermediate host. The high host-switching rates within orders, as well as between humans, domesticated mammals, and non-flying wild mammals, indicates the potential for rapid additional spreading of coronaviruses across the world. Our results suggest that the evolutionary history of extant mammalian coronaviruses is recent, and that cases of long-term virus–host codiversification have been largely over-estimated.