1. Epidemiology and Global Health
Download icon

Mortality: A comprehensive look at the COVID-19 pandemic death toll

  1. Lone Simonsen  Is a corresponding author
  2. Cecile Viboud
  1. PandemiX Center, Institute of Science and Environment, Roskilde University, Denmark
  2. Fogarty International Center, National Institutes of Health, United States
Insight
  • Cited 0
  • Views 3,769
  • Annotations
Cite this article as: eLife 2021;10:e71974 doi: 10.7554/eLife.71974

Abstract

COVID-19 ‘excess mortality’ has been estimated for more than 100 countries and shows a dramatic death toll in many countries.

Main text

More than 18 months into the pandemic, the exact death toll of COVID-19 remains elusive. There are several ways to assess how many people have died in a pandemic, each with their advantages and disadvantages. Official national reports of COVID-19 deaths are useful, but their accuracy depends on the level of testing in that country and may underestimate the true death toll. Combining mortality rates with estimates of the fraction of people in a country who have been infected provides a better estimate, but requires serological studies of antibody prevalence that are not widely available. A tried-and-trusted approach to calculate the death toll is to estimate 'excess mortality' by comparing the total number of deaths during the pandemic period with a baseline level of deaths before the pandemic. This indirect statistical approach does not depend on testing strategy.

A recent study, based on data from 29 high-income countries during 2020, reported substantial excess mortality in some Eastern European countries and no excess mortality in New Zealand, Norway or Denmark (Islam et al., 2021). Now, in eLife, Ariel Karlinsky (Hebrew University) and Dmitry Kobak (University of Tübingen) report the results of an excess mortality study that extends to the summer of 2021 and more than 100 countries, and provides a first look at the substantial pandemic death toll in several middle-income countries (Karlinsky and Kobak, 2021). Excess mortality depends on infection rates, population demographics, COVID-19 interventions and vaccine coverage, and reflects the unique pandemic experience of different countries.

Karlinsky and Kobak compiled a unique database of weekly, monthly or quarterly deaths in 103 countries, including five years of pre-pandemic baselines for most of these. In some of the worst-affected countries, mortality in 2020 and the first half of 2021 exceeded the baseline level by between 50% and 150% (e.g., Peru and Mexico), and in absolute terms, more than 0.4% of the population died of COVID-19 in some countries (e.g., Peru and Bulgaria). For Peru, the most severely affected country, the effects of a poor healthcare system may have been exacerbated by strict lockdowns that fostered severe economic restraints and mass migration (Taylor, 2021). Meanwhile, countries like Japan, Finland, the Philippines, and South Korea had negative excess mortality, reflecting excellent pandemic control, which resulted in a modest COVID-19 death toll and a near absence of influenza deaths during the pandemic. For such countries, the official COVID-19 death count is more accurate than excess mortality estimates. The impact of COVID-19 was intermediate in South Africa and Russia, with mortality about 30% higher than the baseline and a death rate of about 0.3%.

Excess mortality reflects the sum of positive and negative changes from baseline years, meaning that some of the changes observed may not be directly related to the COVID-19 pandemic itself, but due instead to interventions. For example, social distancing measures decrease circulation and mortality due to influenza and other non-SARS-CoV-2 pathogens, but other factors – such as overwhelmed healthcare systems, violence and drug overdoses – increase mortality. However, Karlinsky and Kobak convincingly argue that most excess deaths reflect the direct consequences of COVID-19 (see also the study on excess death in Russia: Kobak, 2021).

Karlinsky and Kobak refrain from calculating the global mortality burden of COVID-19. Such an estimate would be heavily biased due to the lack of data for populous countries like China and India, and because many low-income countries in Asia and Africa cannot participate due to a lack of timely national vital statistics. Such gaps in the data can impact a global mortality estimate greatly: for example, one recent study computed a likely toll of about 4 million COVID-19 deaths in India, which is about 10 times higher than official death counts (Anand et al., 2021). Karlinsky and Kobak estimate that for the 103 countries they collected data for, the true number of COVID-19 deaths is on average 1.4 fold greater (range between 1 to 100-fold) than reported.

Global mortality estimates for past influenza pandemics range from 0.4 million deaths for the 2009 pandemic to 75 million deaths for the 1918 pandemic (Murray et al., 2006; Simonsen et al., 2013; Viboud et al., 2016; all adjusted to 2020 population, see Table 1). Globally, 4.3 million deaths due to SARS-CoV-2 have been reported as of August 11, 2021: this corresponds to about 6 million deaths when applying the mean underreporting factor of 1.4 reported by Karlinsky and Kobak. This is clearly a low global estimate due to missing data from key countries and the continued circulation of new SARS-CoV-2 variants in 2021 and in the coming years. Even so, the COVID-19 pandemic is already deadlier than the 1957 pandemic, but has nowhere near the death toll of the pandemic of 1918.

Table 1
Estimates of global excess mortality for five pandemics.

Estimates of the global per capita excess mortality rate (row 2), the number of global excess deaths adjusted to 2020 population (row 3), and the mean age at death (row 4) for the ongoing COVID-19 pandemic (column 2) and the influenza pandemics of 2009, 1968, 1957 and 1918 (columns 3–6). Each study used different statistical models, assumptions and country data. The levels of mortality in non-participating countries were estimated using various extrapolation/imputation strategies.

COVID-19120092196831957419185
Per capita excess mortality rate>0.08%60.005%0.03%0.04%1.0%
Global excess deaths adjusted to 2020 population>6 million60.4 million2.2 million3.1 million75 million
Mean age at death (years)70737626527
  1. 1Karlinsky and Kobak, 2021. 103 wealthier countries; an under-reporting factor of 1.4 was applied.

    2Simonsen et al., 2013. Based on 2009 data from 20 countries covering approximately 35% of the world population and using an allcause imputation method that uses 10 factors. Estimates based on 300,000–400,000 pandemic excess deaths from all causes.

  2. 3CDC, 2019. Based on 1 million excess deaths in the US, UK, Canada, Australia and France.

    4Viboud et al., 2016. For the entire pandemic period (1957–1959), using data from 39 countries; extrapolated globally based on GDP, latitude and baseline death rate.

  3. 5Murray et al., 2006. 13 countries or regions for the entire pandemic period between 1918–1920; allcause mortality; extrapolated by GDP, latitude; (62 million deaths in 2004 population).

    Based on the official COVID-19 global death toll as of 11/8/2021 multiplied by 1.4 to allow account for underreporting (Karlinsky and Kobak, 2021). This is an underestimate as the 103 participating countries in this study are wealthier, but harder-hit populous countries like India (which may account for approximately 4 million excess deaths) are not included. Also, the burden is incomplete because the COVID-19 pandemic is not yet over.

  4. 7The COVID-19 pandemic mainly kills the elderly, but the exact mean age of deaths is not currently known. Mean age at death is likely lower in middle-income countries: for example, it is reported to be 60 years in South Africa (Guimarães et al., 2021; Statistics South Africa, 2020).

Importantly, these historical comparisons do not consider long-term decreases in baseline mortality due to better healthcare, longer life expectancy and other factors, which make the COVID-19 pandemic stand out sharply against low background mortality levels. Another key consideration is age: the mean age of people who die of COVID-19 is around 70 years, similar to the 1957 pandemic, but dramatically higher than the 1918 and 2009 pandemics (Table 1). The mean age at death is likely lower for less wealthy countries with younger populations (e.g., 60 years in South Africa; Table 1). Mortality age patterns are critically needed for estimating years of life lost, which is an alternative metric used to understand and compare pandemic death tolls (Viboud et al., 2010; Pifarré I Arolas et al., 2021).

We applaud Karlinsky and Kobak’s efforts to compile, release and update timely mortality data in over 100 countries – a major achievement that would have been impossible even 10 years ago. This is a data revolution that parallels that seen in vaccine development and pathogen sequencing. Future work should focus on including incomplete or subnational mortality data from low- and middle-income countries in Asia, the Middle East and Africa (United Nations) to begin filling the data gap. The database should also be expanded to include age breakdowns whenever available, as in other international mortality databases (such as the Human Mortality Database, COVerAGE-DB, and EuroMOMO). Going forward, we call for resources to maintain these valuable databases in the post-SARS-CoV-2 era, as these can uniquely monitor the complete impact of the COVID-19 pandemic. These databases can also be used to track the death toll of increasingly frequent heat waves and other effects of climate change, and help us be ready for future pandemics.

Note

Disclaimer: This article does not necessarily represent the views of the NIH or the US government.

References

Article and author information

Author details

  1. Lone Simonsen

    Lone Simonsen is in the PandemiX Center, Institute of Science and Environment, Roskilde University, Roskilde, Denmark

    For correspondence
    lonesimo@ruc.dk
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1535-8526
  2. Cecile Viboud

    Cecile Viboud is in the Fogarty International Center, National Institutes of Health, Bethesda, United States

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3243-4711

Publication history

  1. Version of Record published: August 12, 2021 (version 1)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 3,769
    Page views
  • 135
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Ecology
    2. Epidemiology and Global Health
    David R M Smith et al.
    Research Article

    The human microbiome can protect against colonization with pathogenic antibiotic-resistant bacteria (ARB), but its impacts on the spread of antibiotic resistance are poorly understood. We propose a mathematical modelling framework for ARB epidemiology formalizing within-host ARB-microbiome competition, and impacts of antibiotic consumption on microbiome function. Applied to the healthcare setting, we demonstrate a trade-off whereby antibiotics simultaneously clear bacterial pathogens and increase host susceptibility to their colonization, and compare this framework with a traditional strain-based approach. At the population level, microbiome interactions drive ARB incidence, but not resistance rates, reflecting distinct epidemiological relevance of different forces of competition. Simulating a range of public health interventions (contact precautions, antibiotic stewardship, microbiome recovery therapy) and pathogens (Clostridioides difficile, methicillin-resistant Staphylococcus aureus, multidrug-resistant Enterobacteriaceae) highlights how species-specific within-host ecological interactions drive intervention efficacy. We find limited impact of contact precautions for Enterobacteriaceae prevention, and a promising role for microbiome-targeted interventions to limit ARB spread.

    1. Epidemiology and Global Health
    2. Genetics and Genomics
    Jiahui Si et al.
    Research Article

    Background: Identifying environmentally responsive genetic loci where DNA methylation is associated with coronary heart disease (CHD) may reveal novel pathways or therapeutic targets for CHD. We conducted the first prospective epigenome-wide analysis of DNA methylation in relation to incident CHD in the Asian population.

    Methods: We did a nested case-control study comprising incident CHD cases and 1:1 matched controls who were identified from the 10-year follow-up of the China Kadoorie Biobank. Methylation level of baseline blood leukocyte DNA was measured by Infinium Methylation EPIC BeadChip. We performed the single cytosine-phosphate-guanine (CpG) site association analysis and network approach to identify CHD-associated CpG sites and co-methylation gene module.

    Results: After quality control, 982 participants (mean age 50.1 years) were retained. Methylation level at 25 CpG sites across the genome was associated with incident CHD (genome-wide false discovery rate [FDR] < 0.05 or module-specific FDR <0.01). One SD increase in methylation level of identified CpGs was associated with differences in CHD risk, ranging from a 47% decrease to a 118% increase. Mediation analyses revealed 28.5% of the excessed CHD risk associated with smoking was mediated by methylation level at the promoter region of ANKS1A gene (P for mediation effect = 0.036). Methylation level at the promoter region of SNX30 was associated with blood pressure and subsequent risk of CHD, with the mediating proportion to be 7.7% (P = 0.003) via systolic blood pressure and 6.4% (P = 0.006) via diastolic blood pressure. Network analysis revealed a co-methylation module associated with CHD.

    Conclusions: We identified novel blood methylation alterations associated with incident CHD in the Asian population and provided evidence of the possible role of epigenetic regulations in the smoking- and BP-related pathways to CHD risk.

    Funding: This work was supported by National Natural Science Foundation of China (81390544 and 91846303). The CKB baseline survey and the first re-survey were supported by a grant from the Kadoorie Charitable Foundation in Hong Kong. The long-term follow-up is supported by grants from the UK Wellcome Trust (202922/Z/16/Z, 088158/Z/09/Z, 104085/Z/14/Z), grant (2016YFC0900500, 2016YFC0900501, 2016YFC0900504, 2016YFC1303904) from the National Key and Program of China, and Chinese Ministry of Science and Technology (2011BAI09B01).