Predictors of human-infective RNA virus discovery in the United States, China and Africa, an ecological study

  1. Feifei Zhang  Is a corresponding author
  2. Margo Chase-Topping
  3. Chuan-Guo Guo
  4. Mark EJ Woolhouse
  1. University of Edinburgh, United Kingdom
  2. University of Hong Kong, China

Abstract

Background: The variation in the pathogen type as well as the spatial heterogeneity of predictors make the generality of any associations with pathogen discovery debatable. Our previous work confirmed that the association of a group of predictors differed across different types of RNA viruses, yet there have been no previous comparisons of the specific predictors for RNA virus discovery in different regions. The aim of the current study was to close the gap by investigating whether predictors of discovery rates within three regions-the United States, China, and Africa-differ from one another and from those at the global level.

Methods: Based on a comprehensive list of human-infective RNA viruses, we collated published data on first discovery of each species in each region. We used a Poisson boosted regression tree (BRT) model to examine the relationship between virus discovery and 33 predictors representing climate, socio-economics, land use, and biodiversity across each region separately. The discovery probability in three regions in 2010-2019 was mapped using the fitted models and historical predictors.

Results: The numbers of human-infective virus species discovered in the United States, China, and Africa up to 2019 were 95, 80 and 107 respectively, with China lagging behind the other two regions. In each region, discoveries were clustered in hotspots. BRT modelling suggested that in all three regions RNA virus discovery was better predicted by land use and socio-economic variables than climatic variables and biodiversity, though the relative importance of these predictors varied by region. Map of virus discovery probability in 2010-2019 indicated several new hotspots outside historical high-risk areas. Most new virus species since 2010 in each region (6/6 in the United States, 19/19 in China, 12/19 in Africa) were discovered in high-risk areas as predicted by our model.

Conclusions: The drivers of spatiotemporal variation in virus discovery rates vary in different regions of the world. Within regions virus discovery is driven mainly by land-use and socio-economic variables; climate and biodiversity variables are consistently less important predictors than at a global scale. Potential new discovery hotspots in 2010-2019 are identified. Results from the study could guide active surveillance for new human-infective viruses in local high-risk areas.

Funding: FFZ is funded by the Darwin Trust of Edinburgh (https://darwintrust.bio.ed.ac.uk/). MEJW has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 874735 (VEO) (https://www.veo-europe.eu/).

Data availability

The authors confirm that all data or the data sources are provided in the paper and its Supplementary Materials. The final datasets and codes used for the analyses are available via figshare at https://doi.org/10.6084/m9.figshare.15101979.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Feifei Zhang

    University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    Feifei.Zhang@ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3718-243X
  2. Margo Chase-Topping

    University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Chuan-Guo Guo

    Department of Medicine, University of Hong Kong, Hong Kong, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Mark EJ Woolhouse

    University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Funding

Darwin Trust of Edinburgh

  • Feifei Zhang

European Union's Horizon 2020 research and innovation programme (874735)

  • Mark EJ Woolhouse

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 930
    views
  • 222
    downloads
  • 1
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Feifei Zhang
  2. Margo Chase-Topping
  3. Chuan-Guo Guo
  4. Mark EJ Woolhouse
(2022)
Predictors of human-infective RNA virus discovery in the United States, China and Africa, an ecological study
eLife 11:e72123.
https://doi.org/10.7554/eLife.72123

Share this article

https://doi.org/10.7554/eLife.72123

Further reading

    1. Ecology
    Itai Bloch, David Troupin ... Nir Sapir
    Research Article

    Optimal foraging theory posits that foragers adjust their movements based on prey abundance to optimize food intake. While extensively studied in terrestrial and marine environments, aerial foraging has remained relatively unexplored due to technological limitations. This study, uniquely combining BirdScan-MR1 radar and the Advanced Tracking and Localization of Animals in Real-Life Systems biotelemetry system, investigates the foraging dynamics of Little Swifts (Apus affinis) in response to insect movements over Israel’s Hula Valley. Insect movement traffic rate (MoTR) substantially varied across days, strongly influencing swift movement. On days with high MoTR, swifts exhibited reduced flight distance, increased colony visit rate, and earlier arrivals at the breeding colony, reflecting a dynamic response to prey availability. However, no significant effects were observed in total foraging duration, flight speed, or daily route length. Notably, as insect abundance increased, inter-individual distances decreased. These findings suggest that Little Swifts optimize their foraging behavior in relation to aerial insect abundance, likely influencing reproductive success and population dynamics. The integration of radar technology and biotelemetry systems provides a unique perspective on the interactions between aerial insectivores and their prey, contributing to a comprehensive understanding of optimal foraging strategies in diverse environments.

    1. Ecology
    2. Evolutionary Biology
    Rebecca D Tarvin, Jeffrey L Coleman ... Richard W Fitch
    Research Article

    Understanding the origins of novel, complex phenotypes is a major goal in evolutionary biology. Poison frogs of the family Dendrobatidae have evolved the novel ability to acquire alkaloids from their diet for chemical defense at least three times. However, taxon sampling for alkaloids has been biased towards colorful species, without similar attention paid to inconspicuous ones that are often assumed to be undefended. As a result, our understanding of how chemical defense evolved in this group is incomplete. Here, we provide new data showing that, in contrast to previous studies, species from each undefended poison frog clade have measurable yet low amounts of alkaloids. We confirm that undefended dendrobatids regularly consume mites and ants, which are known sources of alkaloids. Thus, our data suggest that diet is insufficient to explain the defended phenotype. Our data support the existence of a phenotypic intermediate between toxin consumption and sequestration — passive accumulation — that differs from sequestration in that it involves no derived forms of transport and storage mechanisms yet results in low levels of toxin accumulation. We discuss the concept of passive accumulation and its potential role in the origin of chemical defenses in poison frogs and other toxin-sequestering organisms. In light of ideas from pharmacokinetics, we incorporate new and old data from poison frogs into an evolutionary model that could help explain the origins of acquired chemical defenses in animals and provide insight into the molecular processes that govern the fate of ingested toxins.