Large-scale orientational order in bacterial colonies during inward growth

  1. Mustafa Basaran
  2. Y Ilker Yaman
  3. Tevfik Can Yüce
  4. Roman Vetter
  5. Askin Kocabas  Is a corresponding author
  1. Koç University, Turkey
  2. ETH Zurich, Switzerland

Abstract

During colony growth, complex interactions regulate the bacterial orientation, leading to the formation of large-scale ordered structures, including topological defects, microdomains, and branches. These structures may benefit bacterial strains, providing invasive advantages during colonization. Active matter dynamics of growing colonies drives the emergence of these ordered structures. However, additional biomechanical factors also play a significant role during this process. Here we show that the velocity profile of growing colonies creates strong radial orientation during inward growth when crowded populations invade a closed area. During this process, growth geometry sets virtual confinement and dictates the velocity profile. Herein, flow-induced alignment and torque balance on the rod-shaped bacteria result in a new stable orientational equilibrium in the radial direction. Our analysis revealed that the dynamics of these radially oriented structures also known as aster defects, depend on bacterial length and can promote the survival of the longest bacteria around localized nutritional hot spots. The present results indicate a new mechanism underlying structural order and provide mechanistic insights into the dynamics of bacterial growth on complex surfaces.

Data availability

The critical experimental data generated or analyzed during this study are provided as supporting video files.Code Availability:The codes utilized previously published open-source software from https://depts.washington.edu/soslab/gro/ and are made available on GitHub (https://github.com/mustafa-basaran/Large_Scale_Orientation_Bacteria).

Article and author information

Author details

  1. Mustafa Basaran

    Department of Physics, Koç University, Istanbul, Turkey
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1895-254X
  2. Y Ilker Yaman

    Department of Physics, Koç University, Istanbul, Turkey
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4094-616X
  3. Tevfik Can Yüce

    Department of Physics, Koç University, Istanbul, Turkey
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6888-2690
  4. Roman Vetter

    Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2901-7036
  5. Askin Kocabas

    Department of Physics, Koç University, Istanbul, Turkey
    For correspondence
    akocabas@ku.edu.tr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6930-1202

Funding

EMBO Installation Grant (IG 3275)

  • Askin Kocabas

BAGEP (young investigator award)

  • Askin Kocabas

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Pierre Sens, Institut Curie, CNRS UMR168, France

Version history

  1. Received: July 14, 2021
  2. Accepted: February 24, 2022
  3. Accepted Manuscript published: March 7, 2022 (version 1)
  4. Version of Record published: March 29, 2022 (version 2)

Copyright

© 2022, Basaran et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,442
    views
  • 275
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mustafa Basaran
  2. Y Ilker Yaman
  3. Tevfik Can Yüce
  4. Roman Vetter
  5. Askin Kocabas
(2022)
Large-scale orientational order in bacterial colonies during inward growth
eLife 11:e72187.
https://doi.org/10.7554/eLife.72187

Share this article

https://doi.org/10.7554/eLife.72187

Further reading

    1. Microbiology and Infectious Disease
    2. Physics of Living Systems
    Fabien Duveau, Céline Cordier ... Pascal Hersen
    Research Article

    Natural environments of living organisms are often dynamic and multifactorial, with multiple parameters fluctuating over time. To better understand how cells respond to dynamically interacting factors, we quantified the effects of dual fluctuations of osmotic stress and glucose deprivation on yeast cells using microfluidics and time-lapse microscopy. Strikingly, we observed that cell proliferation, survival, and signaling depend on the phasing of the two periodic stresses. Cells divided faster, survived longer, and showed decreased transcriptional response when fluctuations of hyperosmotic stress and glucose deprivation occurred in phase than when the two stresses occurred alternatively. Therefore, glucose availability regulates yeast responses to dynamic osmotic stress, showcasing the key role of metabolic fluctuations in cellular responses to dynamic stress. We also found that mutants with impaired osmotic stress response were better adapted to alternating stresses than wild-type cells, showing that genetic mechanisms of adaptation to a persistent stress factor can be detrimental under dynamically interacting conditions.

    1. Physics of Living Systems
    Josep-Maria Armengol-Collado, Livio Nicola Carenza, Luca Giomi
    Research Article Updated

    We formulate a hydrodynamic theory of confluent epithelia: i.e. monolayers of epithelial cells adhering to each other without gaps. Taking advantage of recent progresses toward establishing a general hydrodynamic theory of p-atic liquid crystals, we demonstrate that collectively migrating epithelia feature both nematic (i.e. p = 2) and hexatic (i.e. p = 6) orders, with the former being dominant at large and the latter at small length scales. Such a remarkable multiscale liquid crystal order leaves a distinct signature in the system’s structure factor, which exhibits two different power-law scaling regimes, reflecting both the hexagonal geometry of small cells clusters and the uniaxial structure of the global cellular flow. We support these analytical predictions with two different cell-resolved models of epithelia – i.e. the self-propelled Voronoi model and the multiphase field model – and highlight how momentum dissipation and noise influence the range of fluctuations at small length scales, thereby affecting the degree of cooperativity between cells. Our construction provides a theoretical framework to conceptualize the recent observation of multiscale order in layers of Madin–Darby canine kidney cells and pave the way for further theoretical developments.