Proximity labeling identifies LOTUS domain proteins that promote the formation of perinuclear germ granules in C. elegans

  1. Ian F Price
  2. Hannah L Hertz
  3. Benjamin Pastore
  4. Jillian Wagner
  5. Wen Tang  Is a corresponding author
  1. Ohio State University, United States

Abstract

The germ line produces gametes that transmit genetic and epigenetic information to the next generation. Maintenance of germ cells and development of gametes require germ granules-well-conserved membraneless and RNA-rich organelles. The composition of germ granules is elusive owing to their dynamic nature and their exclusive expression in the germ line. Using C. elegans germ granule, called P granule, as a model system, we employed a proximity-based labeling method in combination with mass spectrometry to comprehensively define its protein components. This set of experiments identified over 200 proteins, many of which contain intrinsically disordered regions. An RNAi-based screen identified factors that are essential for P granule assembly, notably EGGD-1 and EGGD-2, two putative LOTUS-domain proteins. Loss of eggd-1 and eggd-2 results in separation of P granules from the nuclear envelope, germline atrophy and reduced fertility. We show that intrinsically disordered regions of EGGD-1 are required to anchor EGGD-1 to the nuclear periphery while its LOTUS domains are required to promote perinuclear localization of P granules. Together, our work expands the repertoire of P granule constituents and provides new insights into the role of LOTUS-domain proteins in germ granule organization.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file.Source data files are uploaded to Dryad: https://doi.org/10.5061/dryad.q2bvq83k9Scripts for data analysis are uploaded to Githubhttps://github.com/benpastore/TurboID

The following data sets were generated

Article and author information

Author details

  1. Ian F Price

    Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Hannah L Hertz

    Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Benjamin Pastore

    Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jillian Wagner

    Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Wen Tang

    Ohio State University, Columbus, United States
    For correspondence
    tang.542@osu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6684-5258

Funding

National Institutes of Health (R00GM124460)

  • Wen Tang

National Institutes of Health (R35GM142580)

  • Wen Tang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael Buszczak, University of Texas Southwestern Medical Center, United States

Version history

  1. Received: July 17, 2021
  2. Preprint posted: July 27, 2021 (view preprint)
  3. Accepted: November 1, 2021
  4. Accepted Manuscript published: November 3, 2021 (version 1)
  5. Version of Record published: November 25, 2021 (version 2)

Copyright

© 2021, Price et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,902
    views
  • 352
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ian F Price
  2. Hannah L Hertz
  3. Benjamin Pastore
  4. Jillian Wagner
  5. Wen Tang
(2021)
Proximity labeling identifies LOTUS domain proteins that promote the formation of perinuclear germ granules in C. elegans
eLife 10:e72276.
https://doi.org/10.7554/eLife.72276

Share this article

https://doi.org/10.7554/eLife.72276

Further reading

    1. Cell Biology
    Zhongyun Xie, Yongping Chai ... Wei Li
    Research Article

    Asymmetric cell divisions (ACDs) generate two daughter cells with identical genetic information but distinct cell fates through epigenetic mechanisms. However, the process of partitioning different epigenetic information into daughter cells remains unclear. Here, we demonstrate that the nucleosome remodeling and deacetylase (NuRD) complex is asymmetrically segregated into the surviving daughter cell rather than the apoptotic one during ACDs in Caenorhabditis elegans. The absence of NuRD triggers apoptosis via the EGL-1-CED-9-CED-4-CED-3 pathway, while an ectopic gain of NuRD enables apoptotic daughter cells to survive. We identify the vacuolar H+–adenosine triphosphatase (V-ATPase) complex as a crucial regulator of NuRD’s asymmetric segregation. V-ATPase interacts with NuRD and is asymmetrically segregated into the surviving daughter cell. Inhibition of V-ATPase disrupts cytosolic pH asymmetry and NuRD asymmetry. We suggest that asymmetric segregation of V-ATPase may cause distinct acidification levels in the two daughter cells, enabling asymmetric epigenetic inheritance that specifies their respective life-versus-death fates.

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Rajdeep Banerjee, Thomas J Meyer ... David D Roberts
    Research Article

    Extramedullary erythropoiesis is not expected in healthy adult mice, but erythropoietic gene expression was elevated in lineage-depleted spleen cells from Cd47−/− mice. Expression of several genes associated with early stages of erythropoiesis was elevated in mice lacking CD47 or its signaling ligand thrombospondin-1, consistent with previous evidence that this signaling pathway inhibits expression of multipotent stem cell transcription factors in spleen. In contrast, cells expressing markers of committed erythroid progenitors were more abundant in Cd47−/− spleens but significantly depleted in Thbs1−/− spleens. Single-cell transcriptome and flow cytometry analyses indicated that loss of CD47 is associated with accumulation and increased proliferation in spleen of Ter119CD34+ progenitors and Ter119+CD34 committed erythroid progenitors with elevated mRNA expression of Kit, Ermap, and Tfrc. Induction of committed erythroid precursors is consistent with the known function of CD47 to limit the phagocytic removal of aged erythrocytes. Conversely, loss of thrombospondin-1 delays the turnover of aged red blood cells, which may account for the suppression of committed erythroid precursors in Thbs1−/− spleens relative to basal levels in wild-type mice. In addition to defining a role for CD47 to limit extramedullary erythropoiesis, these studies reveal a thrombospondin-1-dependent basal level of extramedullary erythropoiesis in adult mouse spleen.