Proximity labeling identifies LOTUS domain proteins that promote the formation of perinuclear germ granules in C. elegans

  1. Ian F Price
  2. Hannah L Hertz
  3. Benjamin Pastore
  4. Jillian Wagner
  5. Wen Tang  Is a corresponding author
  1. Ohio State University, United States

Abstract

The germ line produces gametes that transmit genetic and epigenetic information to the next generation. Maintenance of germ cells and development of gametes require germ granules-well-conserved membraneless and RNA-rich organelles. The composition of germ granules is elusive owing to their dynamic nature and their exclusive expression in the germ line. Using C. elegans germ granule, called P granule, as a model system, we employed a proximity-based labeling method in combination with mass spectrometry to comprehensively define its protein components. This set of experiments identified over 200 proteins, many of which contain intrinsically disordered regions. An RNAi-based screen identified factors that are essential for P granule assembly, notably EGGD-1 and EGGD-2, two putative LOTUS-domain proteins. Loss of eggd-1 and eggd-2 results in separation of P granules from the nuclear envelope, germline atrophy and reduced fertility. We show that intrinsically disordered regions of EGGD-1 are required to anchor EGGD-1 to the nuclear periphery while its LOTUS domains are required to promote perinuclear localization of P granules. Together, our work expands the repertoire of P granule constituents and provides new insights into the role of LOTUS-domain proteins in germ granule organization.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file.Source data files are uploaded to Dryad: https://doi.org/10.5061/dryad.q2bvq83k9Scripts for data analysis are uploaded to Githubhttps://github.com/benpastore/TurboID

The following data sets were generated

Article and author information

Author details

  1. Ian F Price

    Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Hannah L Hertz

    Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Benjamin Pastore

    Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Jillian Wagner

    Ohio State University, Columbus, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Wen Tang

    Ohio State University, Columbus, United States
    For correspondence
    tang.542@osu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6684-5258

Funding

National Institutes of Health (R00GM124460)

  • Wen Tang

National Institutes of Health (R35GM142580)

  • Wen Tang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael Buszczak, University of Texas Southwestern Medical Center, United States

Version history

  1. Received: July 17, 2021
  2. Preprint posted: July 27, 2021 (view preprint)
  3. Accepted: November 1, 2021
  4. Accepted Manuscript published: November 3, 2021 (version 1)
  5. Version of Record published: November 25, 2021 (version 2)

Copyright

© 2021, Price et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,721
    Page views
  • 337
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ian F Price
  2. Hannah L Hertz
  3. Benjamin Pastore
  4. Jillian Wagner
  5. Wen Tang
(2021)
Proximity labeling identifies LOTUS domain proteins that promote the formation of perinuclear germ granules in C. elegans
eLife 10:e72276.
https://doi.org/10.7554/eLife.72276

Share this article

https://doi.org/10.7554/eLife.72276

Further reading

    1. Cell Biology
    Fabian Link, Alyssa Borges ... Markus Engstler
    Research Article

    Endocytosis is a common process observed in most eukaryotic cells, although its complexity varies among different organisms. In Trypanosoma brucei, the endocytic machinery is under special selective pressure because rapid membrane recycling is essential for immune evasion. This unicellular parasite effectively removes host antibodies from its cell surface through hydrodynamic drag and fast endocytic internalization. The entire process of membrane recycling occurs exclusively through the flagellar pocket, an extracellular organelle situated at the posterior pole of the spindle-shaped cell. The high-speed dynamics of membrane flux in trypanosomes do not seem compatible with the conventional concept of distinct compartments for early endosomes (EE), late endosomes (LE), and recycling endosomes (RE). To investigate the underlying structural basis for the remarkably fast membrane traffic in trypanosomes, we employed advanced techniques in light and electron microscopy to examine the three-dimensional architecture of the endosomal system. Our findings reveal that the endosomal system in trypanosomes exhibits a remarkably intricate structure. Instead of being compartmentalized, it constitutes a continuous membrane system, with specific functions of the endosome segregated into membrane subdomains enriched with classical markers for EE, LE, and RE. These membrane subdomains can partly overlap or are interspersed with areas that are negative for endosomal markers. This continuous endosome allows fast membrane flux by facilitated diffusion that is not slowed by multiple fission and fusion events.

    1. Cell Biology
    2. Neuroscience
    Haibin Yu, Dandan Liu ... Kai Yuan
    Research Article

    O-GlcNAcylation is a dynamic post-translational modification that diversifies the proteome. Its dysregulation is associated with neurological disorders that impair cognitive function, and yet identification of phenotype-relevant candidate substrates in a brain-region specific manner remains unfeasible. By combining an O-GlcNAc binding activity derived from Clostridium perfringens OGA (CpOGA) with TurboID proximity labeling in Drosophila, we developed an O-GlcNAcylation profiling tool that translates O-GlcNAc modification into biotin conjugation for tissue-specific candidate substrates enrichment. We mapped the O-GlcNAc interactome in major brain regions of Drosophila and found that components of the translational machinery, particularly ribosomal subunits, were abundantly O-GlcNAcylated in the mushroom body of Drosophila brain. Hypo-O-GlcNAcylation induced by ectopic expression of active CpOGA in the mushroom body decreased local translational activity, leading to olfactory learning deficits that could be rescued by dMyc overexpression-induced increase of protein synthesis. Our study provides a useful tool for future dissection of tissue-specific functions of O-GlcNAcylation in Drosophila, and suggests a possibility that O-GlcNAcylation impacts cognitive function via regulating regional translational activity in the brain.