1. Cell Biology
  2. Developmental Biology
Download icon

Novel LOTUS-domain proteins are organizational hubs that recruit C. elegans Vasa to germ granules

  1. Patricia Giselle Cipriani
  2. Olivia Bay
  3. John Zinno
  4. Michelle Gutwein
  5. Hin Hark Gan
  6. Vinay K Mayya
  7. George Chung
  8. Jia-Xuan Chen
  9. Hala Fahs
  10. Yu Guan
  11. Thomas F Duchaine
  12. Matthias Selbach
  13. Fabio Piano
  14. Kristin C Gunsalus  Is a corresponding author
  1. New York University, United States
  2. McGill University, Canada
  3. Max Delbrück Center for Molecular Medicine, Germany
  4. New York University Abu Dhabi, United Arab Emirates
Research Article
  • Cited 0
  • Views 265
  • Annotations
Cite this article as: eLife 2021;10:e60833 doi: 10.7554/eLife.60833

Abstract

We describe MIP-1 and MIP-2, novel paralogous C. elegans germ granule components that interact with the intrinsically disordered MEG-3 protein. These proteins promote P granule condensation, form granules independently of MEG-3 in the postembryonic germ line, and balance each other in regulating P granule growth and localization. MIP-1 and MIP-2 each contain two LOTUS domains and intrinsically disordered regions and form homo- and heterodimers. They bind and anchor the Vasa homolog GLH-1 within P granules and are jointly required for coalescence of MEG-3, GLH-1, and PGL proteins. Animals lacking MIP-1 and MIP-2 show temperature-sensitive embryonic lethality, sterility, and mortal germ lines. Germline phenotypes include defects in stem cell self-renewal, meiotic progression, and gamete differentiation. We propose that these proteins serve as scaffolds and organizing centers for ribonucleoprotein networks within P granules that help recruit and balance essential RNA processing machinery to regulate key developmental transitions in the germ line.

Data availability

All mass spectrometry raw data have been deposited to the PRIDE repository with the dataset identifier PXD012852. All other data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2A-C; Figure 2-figure supplement 2; Figure 6A,B; Figure 8E; Figure 9B; Figure 9-figure supplement 1; Figure 10C.

The following data sets were generated

Article and author information

Author details

  1. Patricia Giselle Cipriani

    Center for Genomics and Systems Biology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Olivia Bay

    Center for Genomics and Systems Biology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. John Zinno

    Center for Genomics and Systems Biology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Michelle Gutwein

    Center for Genomics and Systems Biology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Hin Hark Gan

    Center for Genomics and Systems Biology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Vinay K Mayya

    Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. George Chung

    Center for Genomics and Systems Biology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jia-Xuan Chen

    None, Max Delbrück Center for Molecular Medicine, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Hala Fahs

    Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
    Competing interests
    The authors declare that no competing interests exist.
  10. Yu Guan

    Center for Genomics and Systems Biology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Thomas F Duchaine

    Goodman Cancer Research Center, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  12. Matthias Selbach

    Department of Protein Dynamics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Fabio Piano

    Department of Biology and Center for Genomics and Systems Biology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Kristin C Gunsalus

    Center for Genomics and Systems Biology, New York University, New York, United States
    For correspondence
    kcg1@nyu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9769-4624

Funding

New York University Abu Dhabi (ADPHG CGSB)

  • Patricia Giselle Cipriani
  • Hala Fahs
  • Fabio Piano
  • Kristin C Gunsalus

New York University Abu Dhabi

  • Patricia Giselle Cipriani
  • Olivia Bay
  • John Zinno
  • Michelle Gutwein
  • Hin Hark Gan
  • George Chung
  • Fabio Piano
  • Kristin C Gunsalus

Canadian Institutes of Health Research (MOP 123352)

  • Vinay K Mayya
  • Thomas F Duchaine

Charlotte and Leo Karassik Foundation

  • Vinay K Mayya

Bundesministerium für Bildung und Forschung (0315362)

  • Jia-Xuan Chen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael Buszczak, University of Texas Southwestern Medical Center, United States

Publication history

  1. Received: July 8, 2020
  2. Accepted: June 27, 2021
  3. Accepted Manuscript published: July 5, 2021 (version 1)

Copyright

© 2021, Cipriani et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 265
    Page views
  • 52
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    Alberto T Gatta et al.
    Research Article Updated

    Through membrane sealing and disassembly of spindle microtubules, the Endosomal Sorting Complex Required for Transport-III (ESCRT-III) machinery has emerged as a key player in the regeneration of a sealed nuclear envelope (NE) during mitotic exit, and in the repair of this organelle during interphase rupture. ESCRT-III assembly at the NE occurs transiently during mitotic (M) exit and is initiated when CHMP7, an ER-localised ESCRT-II/ESCRT-III hybrid protein, interacts with the Inner Nuclear Membrane (INM) protein LEM2. Whilst classical nucleocytoplasmic transport mechanisms have been proposed to separate LEM2 and CHMP7 during interphase, it is unclear how CHMP7 assembly is suppressed in mitosis when NE and ER identities are mixed. Here, we use live cell imaging and protein biochemistry to examine the biology of these proteins during M-exit. Firstly, we show that CHMP7 plays an important role in the dissolution of LEM2 clusters that form at the NE during M-exit. Secondly, we show that CDK1 phosphorylates CHMP7 upon M-entry at Ser3 and Ser441 and that this phosphorylation reduces CHMP7’s interaction with LEM2, limiting its assembly during M-phase. We show that spatiotemporal differences in the dephosphorylation of CHMP7 license its assembly at the NE during telophase, but restrict its assembly on the ER at this time. Without CDK1 phosphorylation, CHMP7 undergoes inappropriate assembly in the peripheral ER during M-exit, capturing LEM2 and downstream ESCRT-III components. Lastly, we establish that a microtubule network is dispensable for ESCRT-III assembly at the reforming nuclear envelope. These data identify a key cell-cycle control programme allowing ESCRT-III-dependent nuclear regeneration.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Jingxiang Li et al.
    Research Article Updated

    Autophagy acts as a pivotal innate immune response against infection. Some virulence effectors subvert the host autophagic machinery to escape the surveillance of autophagy. The mechanism by which pathogens interact with host autophagy remains mostly unclear. However, traditional strategies often have difficulty identifying host proteins that interact with effectors due to the weak, dynamic, and transient nature of these interactions. Here, we found that Enteropathogenic Escherichia coli (EPEC) regulates autophagosome formation in host cells dependent on effector NleE. The 26S Proteasome Regulatory Subunit 10 (PSMD10) was identified as a direct interaction partner of NleE in living cells by employing genetically incorporated crosslinkers. Pairwise chemical crosslinking revealed that NleE interacts with the N-terminus of PSMD10. We demonstrated that PSMD10 homodimerization is necessary for its interaction with ATG7 and promotion of autophagy, but not necessary for PSMD10 interaction with ATG12. Therefore, NleE-mediated PSMD10 in monomeric state attenuates host autophagosome formation. Our study reveals the mechanism through which EPEC attenuates host autophagy activity.