A functional screen of RNA binding proteins identifies genes that promote or limit the accumulation of CD138+ plasma cells

  1. David J Turner
  2. Alexander Saveliev
  3. Fiamma Salerno
  4. Louise S Matheson
  5. Michael Screen
  6. Hannah Lawson
  7. David Wotherspoon
  8. Kamil R Kranc
  9. Martin Turner  Is a corresponding author
  1. The Babraham Institute, United Kingdom
  2. Queen Mary University of London, United Kingdom

Abstract

To identify roles of RNA binding proteins (RBPs) in the differentiation or survival of antibody secreting plasma cells we performed a CRISPR/Cas9 knockout screen of 1213 mouse RBPs for their ability to affect proliferation and/or survival, and the abundance of differentiated CD138+ cells in vitro. We validated the binding partners CSDE1 and STRAP as well as the m6A binding protein YTHDF2 as promoting the accumulation of CD138+ cells in vitro. We validated the EIF3 subunits EIF3K and EIF3L and components of the CCR4-NOT complex as inhibitors of CD138+ cell accumulation in vitro. In chimeric mouse models YTHDF2-deficient plasma cells failed to accumulate.

Data availability

The sgRNA library is available upon request and from Addgene (#169082). The CRISPR/Cas9 knockout screen data and m6A-eCLIP data that support the findings of this study have been deposited in GEO with the GSE179919 accession code, and the RNA-seq data has been deposited in GEO with the GSE179281 accession code.

The following data sets were generated

Article and author information

Author details

  1. David J Turner

    Immunology Programme, The Babraham Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Alexander Saveliev

    Immunology Programme, The Babraham Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Fiamma Salerno

    Immunology Programme, The Babraham Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Louise S Matheson

    Immunology Programme, The Babraham Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Michael Screen

    Immunology Programme, The Babraham Institute, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Hannah Lawson

    Queen Mary University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. David Wotherspoon

    Queen Mary University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Kamil R Kranc

    Queen Mary University of London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Martin Turner

    Immunology Programme, The Babraham Institute, Cambridge, United Kingdom
    For correspondence
    martin.turner@babraham.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3801-9896

Funding

Biotechnology and Biological Sciences Research Council (BBS/E/B/000C0427)

  • Martin Turner

Biotechnology and Biological Sciences Research Council (BBS/E/B/000C0428)

  • Martin Turner

Wellcome Trust (200823/Z/16/Z)

  • Martin Turner

Biotechnology and Biological Sciences Research Council (BB/L016745/1)

  • David J Turner

European Molecular Biology Organisation (ALTF 880-2018)

  • Fiamma Salerno

Cancer Research UK (C29967/A26787)

  • Kamil R Kranc

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mouse experimentation was approved by the Babraham Institute Animal Welfare and Ethical Review Body and was licensed by the United Kingdom Home Office under PPL P4D4AF812.

Copyright

© 2022, Turner et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,287
    views
  • 385
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David J Turner
  2. Alexander Saveliev
  3. Fiamma Salerno
  4. Louise S Matheson
  5. Michael Screen
  6. Hannah Lawson
  7. David Wotherspoon
  8. Kamil R Kranc
  9. Martin Turner
(2022)
A functional screen of RNA binding proteins identifies genes that promote or limit the accumulation of CD138+ plasma cells
eLife 11:e72313.
https://doi.org/10.7554/eLife.72313

Share this article

https://doi.org/10.7554/eLife.72313

Further reading

    1. Developmental Biology
    2. Evolutionary Biology
    Hope M Healey, Hayden B Penn ... William A Cresko
    Research Article

    Seahorses, pipefishes, and seadragons are fishes from the family Syngnathidae that have evolved extraordinary traits including male pregnancy, elongated snouts, loss of teeth, and dermal bony armor. The developmental genetic and cellular changes that led to the evolution of these traits are largely unknown. Recent syngnathid genome assemblies revealed suggestive gene content differences and provided the opportunity for detailed genetic analyses. We created a single-cell RNA sequencing atlas of Gulf pipefish embryos to understand the developmental basis of four traits: derived head shape, toothlessness, dermal armor, and male pregnancy. We completed marker gene analyses, built genetic networks, and examined the spatial expression of select genes. We identified osteochondrogenic mesenchymal cells in the elongating face that express regulatory genes bmp4, sfrp1a, and prdm16. We found no evidence for tooth primordia cells, and we observed re-deployment of osteoblast genetic networks in developing dermal armor. Finally, we found that epidermal cells expressed nutrient processing and environmental sensing genes, potentially relevant for the brooding environment. The examined pipefish evolutionary innovations are composed of recognizable cell types, suggesting that derived features originate from changes within existing gene networks. Future work addressing syngnathid gene networks across multiple stages and species is essential for understanding how the novelties of these fish evolved.

    1. Developmental Biology
    2. Neuroscience
    Taro Ichimura, Taishi Kakizuka ... Takeharu Nagai
    Tools and Resources

    We established a volumetric trans-scale imaging system with an ultra-large field-of-view (FOV) that enables simultaneous observation of millions of cellular dynamics in centimeter-wide three-dimensional (3D) tissues and embryos. Using a custom-made giant lens system with a magnification of ×2 and a numerical aperture (NA) of 0.25, and a CMOS camera with more than 100 megapixels, we built a trans-scale scope AMATERAS-2, and realized fluorescence imaging with a transverse spatial resolution of approximately 1.1 µm across an FOV of approximately 1.5×1.0 cm2. The 3D resolving capability was realized through a combination of optical and computational sectioning techniques tailored for our low-power imaging system. We applied the imaging technique to 1.2 cm-wide section of mouse brain, and successfully observed various regions of the brain with sub-cellular resolution in a single FOV. We also performed time-lapse imaging of a 1-cm-wide vascular network during quail embryo development for over 24 hr, visualizing the movement of over 4.0×105 vascular endothelial cells and quantitatively analyzing their dynamics. Our results demonstrate the potential of this technique in accelerating production of comprehensive reference maps of all cells in organisms and tissues, which contributes to understanding developmental processes, brain functions, and pathogenesis of disease, as well as high-throughput quality check of tissues used for transplantation medicine.