A mechanosensing mechanism controls plasma membrane shape homeostasis at the nanoscale
Abstract
As cells migrate and experience forces from their surroundings, they constantly undergo mechanical deformations which reshape their plasma membrane (PM). To maintain homeostasis, cells need to detect and restore such changes, not only in terms of overall PM area and tension as previously described, but also in terms of local, nano-scale topography. Here we describe a novel phenomenon, by which cells sense and restore mechanically induced PM nano-scale deformations. We show that cell stretch and subsequent compression reshape the PM in a way that generates local membrane evaginations in the 100 nm scale. These evaginations are recognized by I-BAR proteins, which triggers a burst of actin polymerization mediated by Rac1 and Arp2/3. The actin polymerization burst subsequently re-flattens the evagination, completing the mechanochemical feedback loop. Our results demonstrate a new mechanosensing mechanism for PM shape homeostasis, with potential applicability in different physiological scenarios.
Data availability
Source data is provided for all figures in a corresponding source data file.
Article and author information
Author details
Funding
Ministerio de Ciencia e Innovación (PID2019-110298GB-I00)
- Pere Roca-Cusachs
Institució Catalana de Recerca i Estudis Avançats (ICREA Acadèmia Prize)
- Marino Arroyo
- Pere Roca-Cusachs
Ministerio de Ciencia e Innovación (PGC2018-099645-B-I00)
- Xavier Trepat
Ministerio de Ciencia e Innovación (BFU2016-79916-P)
- Xarxa Quiroga
European Commission (H2020-FETPROACT-01-2016-731957)
- Xavier Trepat
- Marino Arroyo
- Pere Roca-Cusachs
Generalitat de Catalunya (2021 SGR 01425)
- Xavier Trepat
- Pere Roca-Cusachs
Fundació la Marató de TV3 (201936-30-31)
- Pere Roca-Cusachs
'la Caixa' Foundation (LCF/PR/HR20/52400004)
- Pere Roca-Cusachs
Ministerio de Ciencia e Innovación (BFU2015-66785-P)
- Francesc Tebar
Associazione Italiana per la Ricerca sul Cancro (AIRC-IG 18621 and 1311 5XMille22759)
- Giorgio Scita
italian ministry of university (PRIN 2017-Prot. 1313 2017HWTP2K)
- Giorgio Scita
European Research Council (Adv-883739)
- Xavier Trepat
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2023, Quiroga et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,440
- views
-
- 453
- downloads
-
- 9
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.