Novel mechanistic insights into the role of Mer2 as the keystone of meiotic DNA break formation

  1. Dorota Rousova
  2. Vaishnavi Nivsarkar
  3. Veronika Altmannova
  4. Vivek B Raina
  5. Saskia K Funk
  6. David Liedtke
  7. Petra Janning
  8. Franziska Müller
  9. Heidi Reichle
  10. Gerben Vader
  11. John Russell Weir  Is a corresponding author
  1. Friedrich Miescher Laboratory, Germany
  2. Max Planck Institute for Molecular Physiology, Germany
  3. Cancer Centre Amsterdam, Netherlands

Abstract

In meiosis, DNA double strand break (DSB) formation by Spo11 initiates recombination and enables chromosome segregation. Numerous factors are required for Spo11 activity, and couple the DSB machinery to the development of a meiosis-specific “axis-tethered loop” chromosome organization. Through in vitro reconstitution and budding yeast genetics we here provide architectural insight into the DSB machinery by focussing on a foundational DSB factor, Mer2. We characterise the interaction of Mer2 with the histone reader Spp1, and show that Mer2 directly associates to nucleosomes, likely highlighting a contribution of Mer2 to tethering DSB factors to chromatin. We reveal the biochemical basis of Mer2 association with Hop1, a HORMA domain-containing chromosomal axis factor. Finally, we identify a conserved region within Mer2 crucial for DSB activity, and show that this region of Mer2 interacts with the DSB factor Mre11. In combination with previous work, we establish Mer2 as a keystone of the DSB machinery by bridging key protein complexes involved in the initiation of meiotic recombination.

Data availability

Source data has been provided for the XL-MS experiments and for the IP-mass spec data

Article and author information

Author details

  1. Dorota Rousova

    Friedrich Miescher Laboratory, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7395-2596
  2. Vaishnavi Nivsarkar

    Department of Mechanistic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Veronika Altmannova

    Friedrich Miescher Laboratory, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Vivek B Raina

    Department of Mechanistic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Saskia K Funk

    Friedrich Miescher Laboratory, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. David Liedtke

    Friedrich Miescher Laboratory, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Petra Janning

    Department of Mechanistic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Franziska Müller

    Department of Mechanistic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Heidi Reichle

    Friedrich Miescher Laboratory, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Gerben Vader

    Department of Human Genetics, Cancer Centre Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  11. John Russell Weir

    Friedrich Miescher Laboratory, Tübingen, Germany
    For correspondence
    john.weir@tuebingen.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6904-0284

Funding

Max-Planck-Gesellschaft

  • Dorota Rousova
  • Vaishnavi Nivsarkar
  • Veronika Altmannova
  • Vivek B Raina
  • Saskia K Funk
  • David Liedtke
  • Petra Janning
  • Franziska Müller
  • Heidi Reichle
  • Gerben Vader
  • John Russell Weir

Deutsche Forschungsgemeinschaft (WE 6513/2-1)

  • Saskia K Funk
  • John Russell Weir

H2020 European Research Council (638197)

  • Vaishnavi Nivsarkar
  • Vivek B Raina
  • Gerben Vader

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Rousova et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,498
    views
  • 437
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dorota Rousova
  2. Vaishnavi Nivsarkar
  3. Veronika Altmannova
  4. Vivek B Raina
  5. Saskia K Funk
  6. David Liedtke
  7. Petra Janning
  8. Franziska Müller
  9. Heidi Reichle
  10. Gerben Vader
  11. John Russell Weir
(2021)
Novel mechanistic insights into the role of Mer2 as the keystone of meiotic DNA break formation
eLife 10:e72330.
https://doi.org/10.7554/eLife.72330

Share this article

https://doi.org/10.7554/eLife.72330

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Ana Patrícia Graça, Vadim Nikitushkin ... Gerald Lackner
    Research Article

    Mycofactocin is a redox cofactor essential for the alcohol metabolism of mycobacteria. While the biosynthesis of mycofactocin is well established, the gene mftG, which encodes an oxidoreductase of the glucose-methanol-choline superfamily, remained functionally uncharacterized. Here, we show that MftG enzymes are almost exclusively found in genomes containing mycofactocin biosynthetic genes and are present in 75% of organisms harboring these genes. Gene deletion experiments in Mycolicibacterium smegmatis demonstrated a growth defect of the ∆mftG mutant on ethanol as a carbon source, accompanied by an arrest of cell division reminiscent of mild starvation. Investigation of carbon and cofactor metabolism implied a defect in mycofactocin reoxidation. Cell-free enzyme assays and respirometry using isolated cell membranes indicated that MftG acts as a mycofactocin dehydrogenase shuttling electrons toward the respiratory chain. Transcriptomics studies also indicated remodeling of redox metabolism to compensate for a shortage of redox equivalents. In conclusion, this work closes an important knowledge gap concerning the mycofactocin system and adds a new pathway to the intricate web of redox reactions governing the metabolism of mycobacteria.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Santi Mestre-Fos, Lucas Ferguson ... Jamie HD Cate
    Research Article

    Stem cell differentiation involves a global increase in protein synthesis to meet the demands of specialized cell types. However, the molecular mechanisms underlying this translational burst and the involvement of initiation factors remains largely unknown. Here, we investigate the role of eukaryotic initiation factor 3 (eIF3) in early differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (NPCs). Using Quick-irCLIP and alternative polyadenylation (APA) Seq, we show eIF3 crosslinks predominantly with 3’ untranslated region (3’-UTR) termini of multiple mRNA isoforms, adjacent to the poly(A) tail. Furthermore, we find that eIF3 engagement at 3’-UTR ends is dependent on polyadenylation. High eIF3 crosslinking at 3’-UTR termini of mRNAs correlates with high translational activity, as determined by ribosome profiling, but not with translational efficiency. The results presented here show that eIF3 engages with 3’-UTR termini of highly translated mRNAs, likely reflecting a general rather than specific regulatory function of eIF3, and supporting a role of mRNA circularization in the mechanisms governing mRNA translation.