Intracerebral mechanisms explaining the impact of incidental feedback on mood state and risky choice

  1. Romane Cecchi
  2. Fabien Vinckier
  3. Jiri Hammer
  4. Petr Marusic
  5. Anca Nica
  6. Sylvain Rheims
  7. Agnès Trebuchon
  8. Emmanuel J Barbeau
  9. Marie Denuelle
  10. Louis Maillard
  11. Lorella Minotti
  12. Philippe Kahane
  13. Mathias Pessiglione
  14. Julien Bastin  Is a corresponding author
  1. Grenoble Alpes University, France
  2. Université de Paris, France
  3. University Hospital in Motol, Czech Republic
  4. Centre Hospitalier Universitaire de Rennes, France
  5. Hospices Civils de Lyon, France
  6. Hôpital de la Timone, France
  7. CNRS, University of Toulouse Paul Sabatier, France
  8. Centre Hospitalier Universitaire de Toulouse, France
  9. University Hospital of Nancy, France
  10. Centre Hospitalier Universitaire de Grenoble, France
  11. Pitié-Salpêtrière Hospital, France

Abstract

Identifying factors whose fluctuations are associated with choice inconsistency is a major issue for rational decision theory. Here, we investigated the neuro-computational mechanisms through which mood fluctuations may bias human choice behavior. Intracerebral EEG data were collected in a large group of subjects (n = 30), while they were performing interleaved quiz and choice tasks that were designed to examine how a series of unrelated feedbacks affects decisions between safe and risky options. Neural baseline activity preceding choice onset was confronted first to mood level, estimated by a computational model integrating the feedbacks received in the quiz task, and then to the weighting of option attributes, in a computational model predicting risk attitude in the choice task. Results showed that 1) elevated broadband gamma activity (BGA) in the ventromedial prefrontal cortex (vmPFC) and dorsal anterior insula (daIns) was respectively signaling periods of high and low mood, 2) increased vmPFC and daIns BGA respectively promoted and tempered risk taking by overweighting gain versus loss prospects. Thus, incidental feedbacks induce brain states that correspond to different moods and bias the evaluation of risky options. More generally, these findings might explain why people experiencing positive (or negative) outcome in some part of their life tend to expect success (or failure) in any other.

Data availability

Due to ethical restrictions on data sharing, we are unable to share raw data for this manuscript to preserve participant anonymity. However, anonymized iEEG data in BIDS format can be made available upon request to the corresponding author (JB) and source data files with anonymized regression estimates are available for download.The custom codes used to (i) extract the different frequency envelopes, and in particular the broadband gamma activity (BGA), from the raw intracranial data, (ii) perform the regression analyses at recording site level, and (iii) compute the second level statistics (across all recording sites of a ROI) are available at: https://gitlab.com/romane-cecchi/publications-code/2022-ieeg-mood-and-risky-choice (Cecchi, 2022; copy archived at https://archive.softwareheritage.org/swh:1:dir:ec43d71a97bf2e3c56b38688eaea2dfde19ad573).

Article and author information

Author details

  1. Romane Cecchi

    Grenoble Alpes University, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6149-939X
  2. Fabien Vinckier

    Université de Paris, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Jiri Hammer

    University Hospital in Motol, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  4. Petr Marusic

    University Hospital in Motol, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  5. Anca Nica

    Centre Hospitalier Universitaire de Rennes, Rennes, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Sylvain Rheims

    Hospices Civils de Lyon, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Agnès Trebuchon

    Hôpital de la Timone, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8632-3454
  8. Emmanuel J Barbeau

    Brain and Cognition Research Centre (CerCo), CNRS, University of Toulouse Paul Sabatier, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0836-3538
  9. Marie Denuelle

    Centre Hospitalier Universitaire de Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Louis Maillard

    University Hospital of Nancy, Nancy, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Lorella Minotti

    Centre Hospitalier Universitaire de Grenoble, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Philippe Kahane

    Centre Hospitalier Universitaire de Grenoble, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  13. Mathias Pessiglione

    Pitié-Salpêtrière Hospital, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  14. Julien Bastin

    Grenoble Alpes University, Grenoble, France
    For correspondence
    julien.bastin@univ-grenoble-alpes.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0533-7564

Funding

Université Grenoble Alpes (ANR-17-CE37-0018)

  • Julien Bastin

Université Grenoble Alpes (ANR-18-CE28-0016)

  • Julien Bastin

Université Grenoble Alpes (ANR-13-TECS-0013)

  • Philippe Kahane
  • Julien Bastin

The Czech Science Foundation (20-21339S)

  • Jiri Hammer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Thorsten Kahnt, National Institute on Drug Abuse Intramural Research Program, United States

Ethics

Human subjects: All patients gave written, informed consent before their inclusion in the present study, which received approval from the local ethics committees (CPP 09-CHUG-12, study 0907; CPP18-001b / 2017-A03248-45; IRB00003888; CER No. 47-0913).

Version history

  1. Preprint posted: June 2, 2021 (view preprint)
  2. Received: July 23, 2021
  3. Accepted: July 12, 2022
  4. Accepted Manuscript published: July 13, 2022 (version 1)
  5. Version of Record published: August 3, 2022 (version 2)

Copyright

© 2022, Cecchi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,013
    views
  • 235
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Romane Cecchi
  2. Fabien Vinckier
  3. Jiri Hammer
  4. Petr Marusic
  5. Anca Nica
  6. Sylvain Rheims
  7. Agnès Trebuchon
  8. Emmanuel J Barbeau
  9. Marie Denuelle
  10. Louis Maillard
  11. Lorella Minotti
  12. Philippe Kahane
  13. Mathias Pessiglione
  14. Julien Bastin
(2022)
Intracerebral mechanisms explaining the impact of incidental feedback on mood state and risky choice
eLife 11:e72440.
https://doi.org/10.7554/eLife.72440

Share this article

https://doi.org/10.7554/eLife.72440

Further reading

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Ryan T Bell, Harutyun Sahakyan ... Eugene V Koonin
    Research Article

    A comprehensive census of McrBC systems, among the most common forms of prokaryotic Type IV restriction systems, followed by phylogenetic analysis, reveals their enormous abundance in diverse prokaryotes and a plethora of genomic associations. We focus on a previously uncharacterized branch, which we denote coiled-coil nuclease tandems (CoCoNuTs) for their salient features: the presence of extensive coiled-coil structures and tandem nucleases. The CoCoNuTs alone show extraordinary variety, with three distinct types and multiple subtypes. All CoCoNuTs contain domains predicted to interact with translation system components, such as OB-folds resembling the SmpB protein that binds bacterial transfer-messenger RNA (tmRNA), YTH-like domains that might recognize methylated tmRNA, tRNA, or rRNA, and RNA-binding Hsp70 chaperone homologs, along with RNases, such as HEPN domains, all suggesting that the CoCoNuTs target RNA. Many CoCoNuTs might additionally target DNA, via McrC nuclease homologs. Additional restriction systems, such as Type I RM, BREX, and Druantia Type III, are frequently encoded in the same predicted superoperons. In many of these superoperons, CoCoNuTs are likely regulated by cyclic nucleotides, possibly, RNA fragments with cyclic termini, that bind associated CARF (CRISPR-Associated Rossmann Fold) domains. We hypothesize that the CoCoNuTs, together with the ancillary restriction factors, employ an echeloned defense strategy analogous to that of Type III CRISPR-Cas systems, in which an immune response eliminating virus DNA and/or RNA is launched first, but then, if it fails, an abortive infection response leading to PCD/dormancy via host RNA cleavage takes over.

    1. Computational and Systems Biology
    Skander Kazdaghli, Iordanis Kerenidis ... Philip Teare
    Research Article

    Imputing data is a critical issue for machine learning practitioners, including in the life sciences domain, where missing clinical data is a typical situation and the reliability of the imputation is of great importance. Currently, there is no canonical approach for imputation of clinical data and widely used algorithms introduce variance in the downstream classification. Here we propose novel imputation methods based on determinantal point processes (DPP) that enhance popular techniques such as the multivariate imputation by chained equations and MissForest. Their advantages are twofold: improving the quality of the imputed data demonstrated by increased accuracy of the downstream classification and providing deterministic and reliable imputations that remove the variance from the classification results. We experimentally demonstrate the advantages of our methods by performing extensive imputations on synthetic and real clinical data. We also perform quantum hardware experiments by applying the quantum circuits for DPP sampling since such quantum algorithms provide a computational advantage with respect to classical ones. We demonstrate competitive results with up to 10 qubits for small-scale imputation tasks on a state-of-the-art IBM quantum processor. Our classical and quantum methods improve the effectiveness and robustness of clinical data prediction modeling by providing better and more reliable data imputations. These improvements can add significant value in settings demanding high precision, such as in pharmaceutical drug trials where our approach can provide higher confidence in the predictions made.