Intracerebral mechanisms explaining the impact of incidental feedback on mood state and risky choice

  1. Romane Cecchi
  2. Fabien Vinckier
  3. Jiri Hammer
  4. Petr Marusic
  5. Anca Nica
  6. Sylvain Rheims
  7. Agnès Trebuchon
  8. Emmanuel J Barbeau
  9. Marie Denuelle
  10. Louis Maillard
  11. Lorella Minotti
  12. Philippe Kahane
  13. Mathias Pessiglione
  14. Julien Bastin  Is a corresponding author
  1. Grenoble Alpes University, France
  2. Université de Paris, France
  3. University Hospital in Motol, Czech Republic
  4. Centre Hospitalier Universitaire de Rennes, France
  5. Hospices Civils de Lyon, France
  6. Hôpital de la Timone, France
  7. CNRS, University of Toulouse Paul Sabatier, France
  8. Centre Hospitalier Universitaire de Toulouse, France
  9. University Hospital of Nancy, France
  10. Centre Hospitalier Universitaire de Grenoble, France
  11. Pitié-Salpêtrière Hospital, France

Abstract

Identifying factors whose fluctuations are associated with choice inconsistency is a major issue for rational decision theory. Here, we investigated the neuro-computational mechanisms through which mood fluctuations may bias human choice behavior. Intracerebral EEG data were collected in a large group of subjects (n = 30), while they were performing interleaved quiz and choice tasks that were designed to examine how a series of unrelated feedbacks affects decisions between safe and risky options. Neural baseline activity preceding choice onset was confronted first to mood level, estimated by a computational model integrating the feedbacks received in the quiz task, and then to the weighting of option attributes, in a computational model predicting risk attitude in the choice task. Results showed that 1) elevated broadband gamma activity (BGA) in the ventromedial prefrontal cortex (vmPFC) and dorsal anterior insula (daIns) was respectively signaling periods of high and low mood, 2) increased vmPFC and daIns BGA respectively promoted and tempered risk taking by overweighting gain versus loss prospects. Thus, incidental feedbacks induce brain states that correspond to different moods and bias the evaluation of risky options. More generally, these findings might explain why people experiencing positive (or negative) outcome in some part of their life tend to expect success (or failure) in any other.

Data availability

Due to ethical restrictions on data sharing, we are unable to share raw data for this manuscript to preserve participant anonymity. However, anonymized iEEG data in BIDS format can be made available upon request to the corresponding author (JB) and source data files with anonymized regression estimates are available for download.The custom codes used to (i) extract the different frequency envelopes, and in particular the broadband gamma activity (BGA), from the raw intracranial data, (ii) perform the regression analyses at recording site level, and (iii) compute the second level statistics (across all recording sites of a ROI) are available at: https://gitlab.com/romane-cecchi/publications-code/2022-ieeg-mood-and-risky-choice (Cecchi, 2022; copy archived at https://archive.softwareheritage.org/swh:1:dir:ec43d71a97bf2e3c56b38688eaea2dfde19ad573).

Article and author information

Author details

  1. Romane Cecchi

    Grenoble Alpes University, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6149-939X
  2. Fabien Vinckier

    Université de Paris, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Jiri Hammer

    University Hospital in Motol, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  4. Petr Marusic

    University Hospital in Motol, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  5. Anca Nica

    Centre Hospitalier Universitaire de Rennes, Rennes, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Sylvain Rheims

    Hospices Civils de Lyon, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Agnès Trebuchon

    Hôpital de la Timone, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8632-3454
  8. Emmanuel J Barbeau

    Brain and Cognition Research Centre (CerCo), CNRS, University of Toulouse Paul Sabatier, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0836-3538
  9. Marie Denuelle

    Centre Hospitalier Universitaire de Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Louis Maillard

    University Hospital of Nancy, Nancy, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Lorella Minotti

    Centre Hospitalier Universitaire de Grenoble, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Philippe Kahane

    Centre Hospitalier Universitaire de Grenoble, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  13. Mathias Pessiglione

    Pitié-Salpêtrière Hospital, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  14. Julien Bastin

    Grenoble Alpes University, Grenoble, France
    For correspondence
    julien.bastin@univ-grenoble-alpes.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0533-7564

Funding

Université Grenoble Alpes (ANR-17-CE37-0018)

  • Julien Bastin

Université Grenoble Alpes (ANR-18-CE28-0016)

  • Julien Bastin

Université Grenoble Alpes (ANR-13-TECS-0013)

  • Philippe Kahane
  • Julien Bastin

The Czech Science Foundation (20-21339S)

  • Jiri Hammer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All patients gave written, informed consent before their inclusion in the present study, which received approval from the local ethics committees (CPP 09-CHUG-12, study 0907; CPP18-001b / 2017-A03248-45; IRB00003888; CER No. 47-0913).

Copyright

© 2022, Cecchi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,199
    views
  • 259
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Romane Cecchi
  2. Fabien Vinckier
  3. Jiri Hammer
  4. Petr Marusic
  5. Anca Nica
  6. Sylvain Rheims
  7. Agnès Trebuchon
  8. Emmanuel J Barbeau
  9. Marie Denuelle
  10. Louis Maillard
  11. Lorella Minotti
  12. Philippe Kahane
  13. Mathias Pessiglione
  14. Julien Bastin
(2022)
Intracerebral mechanisms explaining the impact of incidental feedback on mood state and risky choice
eLife 11:e72440.
https://doi.org/10.7554/eLife.72440

Share this article

https://doi.org/10.7554/eLife.72440

Further reading

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.

    1. Computational and Systems Biology
    2. Neuroscience
    Brian DePasquale, Carlos D Brody, Jonathan W Pillow
    Research Article Updated

    Accumulating evidence to make decisions is a core cognitive function. Previous studies have tended to estimate accumulation using either neural or behavioral data alone. Here, we develop a unified framework for modeling stimulus-driven behavior and multi-neuron activity simultaneously. We applied our method to choices and neural recordings from three rat brain regions—the posterior parietal cortex (PPC), the frontal orienting fields (FOF), and the anterior-dorsal striatum (ADS)—while subjects performed a pulse-based accumulation task. Each region was best described by a distinct accumulation model, which all differed from the model that best described the animal’s choices. FOF activity was consistent with an accumulator where early evidence was favored while the ADS reflected near perfect accumulation. Neural responses within an accumulation framework unveiled a distinct association between each brain region and choice. Choices were better predicted from all regions using a comprehensive, accumulation-based framework and different brain regions were found to differentially reflect choice-related accumulation signals: FOF and ADS both reflected choice but ADS showed more instances of decision vacillation. Previous studies relating neural data to behaviorally inferred accumulation dynamics have implicitly assumed that individual brain regions reflect the whole-animal level accumulator. Our results suggest that different brain regions represent accumulated evidence in dramatically different ways and that accumulation at the whole-animal level may be constructed from a variety of neural-level accumulators.