Intracerebral mechanisms explaining the impact of incidental feedback on mood state and risky choice

  1. Romane Cecchi
  2. Fabien Vinckier
  3. Jiri Hammer
  4. Petr Marusic
  5. Anca Nica
  6. Sylvain Rheims
  7. Agnès Trebuchon
  8. Emmanuel J Barbeau
  9. Marie Denuelle
  10. Louis Maillard
  11. Lorella Minotti
  12. Philippe Kahane
  13. Mathias Pessiglione
  14. Julien Bastin  Is a corresponding author
  1. Grenoble Alpes University, France
  2. Université de Paris, France
  3. University Hospital in Motol, Czech Republic
  4. Centre Hospitalier Universitaire de Rennes, France
  5. Hospices Civils de Lyon, France
  6. Hôpital de la Timone, France
  7. CNRS, University of Toulouse Paul Sabatier, France
  8. Centre Hospitalier Universitaire de Toulouse, France
  9. University Hospital of Nancy, France
  10. Centre Hospitalier Universitaire de Grenoble, France
  11. Pitié-Salpêtrière Hospital, France

Abstract

Identifying factors whose fluctuations are associated with choice inconsistency is a major issue for rational decision theory. Here, we investigated the neuro-computational mechanisms through which mood fluctuations may bias human choice behavior. Intracerebral EEG data were collected in a large group of subjects (n = 30), while they were performing interleaved quiz and choice tasks that were designed to examine how a series of unrelated feedbacks affects decisions between safe and risky options. Neural baseline activity preceding choice onset was confronted first to mood level, estimated by a computational model integrating the feedbacks received in the quiz task, and then to the weighting of option attributes, in a computational model predicting risk attitude in the choice task. Results showed that 1) elevated broadband gamma activity (BGA) in the ventromedial prefrontal cortex (vmPFC) and dorsal anterior insula (daIns) was respectively signaling periods of high and low mood, 2) increased vmPFC and daIns BGA respectively promoted and tempered risk taking by overweighting gain versus loss prospects. Thus, incidental feedbacks induce brain states that correspond to different moods and bias the evaluation of risky options. More generally, these findings might explain why people experiencing positive (or negative) outcome in some part of their life tend to expect success (or failure) in any other.

Data availability

Due to ethical restrictions on data sharing, we are unable to share raw data for this manuscript to preserve participant anonymity. However, anonymized iEEG data in BIDS format can be made available upon request to the corresponding author (JB) and source data files with anonymized regression estimates are available for download.The custom codes used to (i) extract the different frequency envelopes, and in particular the broadband gamma activity (BGA), from the raw intracranial data, (ii) perform the regression analyses at recording site level, and (iii) compute the second level statistics (across all recording sites of a ROI) are available at: https://gitlab.com/romane-cecchi/publications-code/2022-ieeg-mood-and-risky-choice (Cecchi, 2022; copy archived at https://archive.softwareheritage.org/swh:1:dir:ec43d71a97bf2e3c56b38688eaea2dfde19ad573).

Article and author information

Author details

  1. Romane Cecchi

    Grenoble Alpes University, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6149-939X
  2. Fabien Vinckier

    Université de Paris, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Jiri Hammer

    University Hospital in Motol, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  4. Petr Marusic

    University Hospital in Motol, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  5. Anca Nica

    Centre Hospitalier Universitaire de Rennes, Rennes, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Sylvain Rheims

    Hospices Civils de Lyon, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Agnès Trebuchon

    Hôpital de la Timone, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8632-3454
  8. Emmanuel J Barbeau

    Brain and Cognition Research Centre (CerCo), CNRS, University of Toulouse Paul Sabatier, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0836-3538
  9. Marie Denuelle

    Centre Hospitalier Universitaire de Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Louis Maillard

    University Hospital of Nancy, Nancy, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Lorella Minotti

    Centre Hospitalier Universitaire de Grenoble, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Philippe Kahane

    Centre Hospitalier Universitaire de Grenoble, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  13. Mathias Pessiglione

    Pitié-Salpêtrière Hospital, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  14. Julien Bastin

    Grenoble Alpes University, Grenoble, France
    For correspondence
    julien.bastin@univ-grenoble-alpes.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0533-7564

Funding

Université Grenoble Alpes (ANR-17-CE37-0018)

  • Julien Bastin

Université Grenoble Alpes (ANR-18-CE28-0016)

  • Julien Bastin

Université Grenoble Alpes (ANR-13-TECS-0013)

  • Philippe Kahane
  • Julien Bastin

The Czech Science Foundation (20-21339S)

  • Jiri Hammer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Thorsten Kahnt, National Institute on Drug Abuse Intramural Research Program, United States

Ethics

Human subjects: All patients gave written, informed consent before their inclusion in the present study, which received approval from the local ethics committees (CPP 09-CHUG-12, study 0907; CPP18-001b / 2017-A03248-45; IRB00003888; CER No. 47-0913).

Version history

  1. Preprint posted: June 2, 2021 (view preprint)
  2. Received: July 23, 2021
  3. Accepted: July 12, 2022
  4. Accepted Manuscript published: July 13, 2022 (version 1)
  5. Version of Record published: August 3, 2022 (version 2)

Copyright

© 2022, Cecchi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,062
    views
  • 241
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Romane Cecchi
  2. Fabien Vinckier
  3. Jiri Hammer
  4. Petr Marusic
  5. Anca Nica
  6. Sylvain Rheims
  7. Agnès Trebuchon
  8. Emmanuel J Barbeau
  9. Marie Denuelle
  10. Louis Maillard
  11. Lorella Minotti
  12. Philippe Kahane
  13. Mathias Pessiglione
  14. Julien Bastin
(2022)
Intracerebral mechanisms explaining the impact of incidental feedback on mood state and risky choice
eLife 11:e72440.
https://doi.org/10.7554/eLife.72440

Share this article

https://doi.org/10.7554/eLife.72440

Further reading

    1. Computational and Systems Biology
    2. Medicine
    Zachary Shaffer, Roberto Romero ... Nardhy Gomez-Lopez
    Research Article

    Background:

    Preterm birth is the leading cause of neonatal morbidity and mortality worldwide. Most cases of preterm birth occur spontaneously and result from preterm labor with intact (spontaneous preterm labor [sPTL]) or ruptured (preterm prelabor rupture of membranes [PPROM]) membranes. The prediction of spontaneous preterm birth (sPTB) remains underpowered due to its syndromic nature and the dearth of independent analyses of the vaginal host immune response. Thus, we conducted the largest longitudinal investigation targeting vaginal immune mediators, referred to herein as the immunoproteome, in a population at high risk for sPTB.

    Methods:

    Vaginal swabs were collected across gestation from pregnant women who ultimately underwent term birth, sPTL, or PPROM. Cytokines, chemokines, growth factors, and antimicrobial peptides in the samples were quantified via specific and sensitive immunoassays. Predictive models were constructed from immune mediator concentrations.

    Results:

    Throughout uncomplicated gestation, the vaginal immunoproteome harbors a cytokine network with a homeostatic profile. Yet, the vaginal immunoproteome is skewed toward a pro-inflammatory state in pregnant women who ultimately experience sPTL and PPROM. Such an inflammatory profile includes increased monocyte chemoattractants, cytokines indicative of macrophage and T-cell activation, and reduced antimicrobial proteins/peptides. The vaginal immunoproteome has improved predictive value over maternal characteristics alone for identifying women at risk for early (<34 weeks) sPTB.

    Conclusions:

    The vaginal immunoproteome undergoes homeostatic changes throughout gestation and deviations from this shift are associated with sPTB. Furthermore, the vaginal immunoproteome can be leveraged as a potential biomarker for early sPTB, a subset of sPTB associated with extremely adverse neonatal outcomes.

    Funding:

    This research was conducted by the Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS) under contract HHSN275201300006C. ALT, KRT, and NGL were supported by the Wayne State University Perinatal Initiative in Maternal, Perinatal and Child Health.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Ardalan Naseri, Degui Zhi, Shaojie Zhang
    Research Article

    Runs of homozygosity (ROH) segments, contiguous homozygous regions in a genome were traditionally linked to families and inbred populations. However, a growing literature suggests that ROHs are ubiquitous in outbred populations. Still, most existing genetic studies of ROH in populations are limited to aggregated ROH content across the genome, which does not offer the resolution for mapping causal loci. This limitation is mainly due to a lack of methods for the efficient identification of shared ROH diplotypes. Here, we present a new method, ROH-DICE, to find large ROH diplotype clusters, sufficiently long ROHs shared by a sufficient number of individuals, in large cohorts. ROH-DICE identified over 1 million ROH diplotypes that span over 100 SNPs and are shared by more than 100 UK Biobank participants. Moreover, we found significant associations of clustered ROH diplotypes across the genome with various self-reported diseases, with the strongest associations found between the extended HLA region and autoimmune disorders. We found an association between a diplotype covering the HFE gene and hemochromatosis, even though the well-known causal SNP was not directly genotyped or imputed. Using a genome-wide scan, we identified a putative association between carriers of an ROH diplotype in chromosome 4 and an increase in mortality among COVID-19 patients (P-value=1.82×10-11). In summary, our ROH-DICE method, by calling out large ROH diplotypes in a large outbred population, enables further population genetics into the demographic history of large populations. More importantly, our method enables a new genome-wide mapping approach for finding disease-causing loci with multi-marker recessive effects at a population scale.