Intracerebral mechanisms explaining the impact of incidental feedback on mood state and risky choice

  1. Romane Cecchi
  2. Fabien Vinckier
  3. Jiri Hammer
  4. Petr Marusic
  5. Anca Nica
  6. Sylvain Rheims
  7. Agnès Trebuchon
  8. Emmanuel J Barbeau
  9. Marie Denuelle
  10. Louis Maillard
  11. Lorella Minotti
  12. Philippe Kahane
  13. Mathias Pessiglione
  14. Julien Bastin  Is a corresponding author
  1. Grenoble Alpes University, France
  2. Université de Paris, France
  3. University Hospital in Motol, Czech Republic
  4. Centre Hospitalier Universitaire de Rennes, France
  5. Hospices Civils de Lyon, France
  6. Hôpital de la Timone, France
  7. CNRS, University of Toulouse Paul Sabatier, France
  8. Centre Hospitalier Universitaire de Toulouse, France
  9. University Hospital of Nancy, France
  10. Centre Hospitalier Universitaire de Grenoble, France
  11. Pitié-Salpêtrière Hospital, France

Abstract

Identifying factors whose fluctuations are associated with choice inconsistency is a major issue for rational decision theory. Here, we investigated the neuro-computational mechanisms through which mood fluctuations may bias human choice behavior. Intracerebral EEG data were collected in a large group of subjects (n = 30), while they were performing interleaved quiz and choice tasks that were designed to examine how a series of unrelated feedbacks affects decisions between safe and risky options. Neural baseline activity preceding choice onset was confronted first to mood level, estimated by a computational model integrating the feedbacks received in the quiz task, and then to the weighting of option attributes, in a computational model predicting risk attitude in the choice task. Results showed that 1) elevated broadband gamma activity (BGA) in the ventromedial prefrontal cortex (vmPFC) and dorsal anterior insula (daIns) was respectively signaling periods of high and low mood, 2) increased vmPFC and daIns BGA respectively promoted and tempered risk taking by overweighting gain versus loss prospects. Thus, incidental feedbacks induce brain states that correspond to different moods and bias the evaluation of risky options. More generally, these findings might explain why people experiencing positive (or negative) outcome in some part of their life tend to expect success (or failure) in any other.

Data availability

Due to ethical restrictions on data sharing, we are unable to share raw data for this manuscript to preserve participant anonymity. However, anonymized iEEG data in BIDS format can be made available upon request to the corresponding author (JB) and source data files with anonymized regression estimates are available for download.The custom codes used to (i) extract the different frequency envelopes, and in particular the broadband gamma activity (BGA), from the raw intracranial data, (ii) perform the regression analyses at recording site level, and (iii) compute the second level statistics (across all recording sites of a ROI) are available at: https://gitlab.com/romane-cecchi/publications-code/2022-ieeg-mood-and-risky-choice (Cecchi, 2022; copy archived at https://archive.softwareheritage.org/swh:1:dir:ec43d71a97bf2e3c56b38688eaea2dfde19ad573).

Article and author information

Author details

  1. Romane Cecchi

    Grenoble Alpes University, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6149-939X
  2. Fabien Vinckier

    Université de Paris, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Jiri Hammer

    University Hospital in Motol, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  4. Petr Marusic

    University Hospital in Motol, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  5. Anca Nica

    Centre Hospitalier Universitaire de Rennes, Rennes, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Sylvain Rheims

    Hospices Civils de Lyon, Lyon, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Agnès Trebuchon

    Hôpital de la Timone, Marseille, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8632-3454
  8. Emmanuel J Barbeau

    Brain and Cognition Research Centre (CerCo), CNRS, University of Toulouse Paul Sabatier, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0836-3538
  9. Marie Denuelle

    Centre Hospitalier Universitaire de Toulouse, Toulouse, France
    Competing interests
    The authors declare that no competing interests exist.
  10. Louis Maillard

    University Hospital of Nancy, Nancy, France
    Competing interests
    The authors declare that no competing interests exist.
  11. Lorella Minotti

    Centre Hospitalier Universitaire de Grenoble, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  12. Philippe Kahane

    Centre Hospitalier Universitaire de Grenoble, Grenoble, France
    Competing interests
    The authors declare that no competing interests exist.
  13. Mathias Pessiglione

    Pitié-Salpêtrière Hospital, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  14. Julien Bastin

    Grenoble Alpes University, Grenoble, France
    For correspondence
    julien.bastin@univ-grenoble-alpes.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0533-7564

Funding

Université Grenoble Alpes (ANR-17-CE37-0018)

  • Julien Bastin

Université Grenoble Alpes (ANR-18-CE28-0016)

  • Julien Bastin

Université Grenoble Alpes (ANR-13-TECS-0013)

  • Philippe Kahane
  • Julien Bastin

The Czech Science Foundation (20-21339S)

  • Jiri Hammer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All patients gave written, informed consent before their inclusion in the present study, which received approval from the local ethics committees (CPP 09-CHUG-12, study 0907; CPP18-001b / 2017-A03248-45; IRB00003888; CER No. 47-0913).

Reviewing Editor

  1. Thorsten Kahnt, National Institute on Drug Abuse Intramural Research Program, United States

Version history

  1. Preprint posted: June 2, 2021 (view preprint)
  2. Received: July 23, 2021
  3. Accepted: July 12, 2022
  4. Accepted Manuscript published: July 13, 2022 (version 1)
  5. Version of Record published: August 3, 2022 (version 2)

Copyright

© 2022, Cecchi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 963
    Page views
  • 231
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Romane Cecchi
  2. Fabien Vinckier
  3. Jiri Hammer
  4. Petr Marusic
  5. Anca Nica
  6. Sylvain Rheims
  7. Agnès Trebuchon
  8. Emmanuel J Barbeau
  9. Marie Denuelle
  10. Louis Maillard
  11. Lorella Minotti
  12. Philippe Kahane
  13. Mathias Pessiglione
  14. Julien Bastin
(2022)
Intracerebral mechanisms explaining the impact of incidental feedback on mood state and risky choice
eLife 11:e72440.
https://doi.org/10.7554/eLife.72440

Share this article

https://doi.org/10.7554/eLife.72440

Further reading

    1. Computational and Systems Biology
    James D Brunner, Nicholas Chia
    Research Article

    The microbial community composition in the human gut has a profound effect on human health. This observation has lead to extensive use of microbiome therapies, including over-the-counter 'probiotic' treatments intended to alter the composition of the microbiome. Despite so much promise and commercial interest, the factors that contribute to the success or failure of microbiome-targeted treatments remain unclear. We investigate the biotic interactions that lead to successful engraftment of a novel bacterial strain introduced to the microbiome as in probiotic treatments. We use pairwise genome-scale metabolic modeling with a generalized resource allocation constraint to build a network of interactions between taxa that appear in an experimental engraftment study. We create induced sub-graphs using the taxa present in individual samples and assess the likelihood of invader engraftment based on network structure. To do so, we use a generalized Lotka-Volterra model, which we show has strong ability to predict if a particular invader or probiotic will successfully engraft into an individual's microbiome. Furthermore, we show that the mechanistic nature of the model is useful for revealing which microbe-microbe interactions potentially drive engraftment.

    1. Computational and Systems Biology
    Tae-Yun Kang, Federico Bocci ... Andre Levchenko
    Research Article

    Angiogenesis is a morphogenic process resulting in the formation of new blood vessels from pre-existing ones, usually in hypoxic micro-environments. The initial steps of angiogenesis depend on robust differentiation of oligopotent endothelial cells into the Tip and Stalk phenotypic cell fates, controlled by NOTCH-dependent cell–cell communication. The dynamics of spatial patterning of this cell fate specification are only partially understood. Here, by combining a controlled experimental angiogenesis model with mathematical and computational analyses, we find that the regular spatial Tip–Stalk cell patterning can undergo an order–disorder transition at a relatively high input level of a pro-angiogenic factor VEGF. The resulting differentiation is robust but temporally unstable for most cells, with only a subset of presumptive Tip cells leading sprout extensions. We further find that sprouts form in a manner maximizing their mutual distance, consistent with a Turing-like model that may depend on local enrichment and depletion of fibronectin. Together, our data suggest that NOTCH signaling mediates a robust way of cell differentiation enabling but not instructing subsequent steps in angiogenic morphogenesis, which may require additional cues and self-organization mechanisms. This analysis can assist in further understanding of cell plasticity underlying angiogenesis and other complex morphogenic processes.