Empirical single-cell tracking and cell-fate simulation reveal dual roles of p53 in tumor suppression
Abstract
The tumor suppressor p53 regulates various stress responses via increasing its cellular levels. The lowest p53 levels occur in unstressed cells; however, the functions of these low levels remain unclear. To investigate the functions, we used empirical single-cell tracking of p53-expressing (Control) cells and cells in which p53 expression was silenced by RNA interference (p53 RNAi). Here we show that p53 RNAi cells underwent more frequent cell death and cell fusion, which further induced multipolar cell division to generate aneuploid progeny. Those results suggest that the low levels of p53 in unstressed cells indeed have a role in suppressing the induction of cell death and the formation of aneuploid cells. We further investigated the impact of p53 silencing by developing an algorithm to simulate the fates of individual cells. Simulation of the fate of aneuploid cells revealed that these cells could propagate to create an aneuploid cell population. In addition, the simulation also revealed that more frequent induction of cell death in p53 RNAi cells under unstressed conditions conferred a disadvantage in terms of population expansion compared with Control cells, resulting in faster expansion of Control cells compared with p53 RNAi cells, leading to Control cells predominating in mixed cell populations. In contrast, the expansion of Control cells, but not p53 RNAi cells, was suppressed when the damage response was induced, allowing p53 RNAi cells to expand their population compared with the Control cells. These results suggest that, although p53 could suppress the formation of aneuploid cells, which could have a role in tumorigenesis, it could also allow the expansion of cells lacking p53 expression when the damage response is induced. p53 may thus play a role in both the suppression and the promotion of malignant cell formation during tumorigenesis.
Data availability
All data generated or analyzed during this study are included in the paper and supporting file; Source Data files have been provided for Figure 1-figure supplements 2-4, Figures 2, Figures 3, Figures 4, Figure 4-figure supplement 1, Figures 5, Figures 6, Figure 7-figure supplements 1-3, Figure 8-figure supplement 1, Figure 9, Figure 9-figure supplement 1 and 2, and Figures 10-13. Source code has been provided for Figure 7.Figure 1-videos (cellular events), Figure 2-figure supplements (cell-lineage maps), Figure 2-videos (single-cell tracking), Figure 2-source data (cell-lineage database), and Figure 7-figure supplement (cell-lineage maps) have been deposited in Dryad (https://doi.org/10.5061/dryad.pk0p2ngp5).
-
Empirical single-cell tracking and cell-fate simulation reveal dual roles of p53 in tumor suppressionDryad Digital Repository, doi:10.5061/dryad.pk0p2ngp5.
Article and author information
Author details
Funding
Canadian Institutes of Health Research (Operating grant)
- Ann Rancourt
Canada Foundation for Innovation (Equipment Grant)
- Ann Rancourt
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2022, Rancourt et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 538
- views
-
- 120
- downloads
-
- 4
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 4
- citations for umbrella DOI https://doi.org/10.7554/eLife.72498