Stable flow-induced expression of KLK10 inhibits endothelial inflammation and atherosclerosis

  1. Darian Williams
  2. Marwa Mahmoud
  3. Renfa Liu
  4. Aitor Andueza
  5. Sandeep Kumar
  6. Dong-Won Kang
  7. Jiahui Zhang
  8. Ian Tamargo
  9. Nicolas Villa-Roel
  10. Kyung-In Baek
  11. Hwakyoung Lee
  12. Yongjin An
  13. Leran Zhang
  14. Edward W Tate
  15. Pritha Bagchi
  16. Jan Pohl
  17. Laurent O Mosnier
  18. Eleftherios P Diamandis
  19. Koichiro Mihara
  20. Morley D Hollenberg
  21. Zhifei Dai
  22. Hanjoong Jo  Is a corresponding author
  1. Emory University, United States
  2. Georgia Institute of Technology, United States
  3. Peking University, China
  4. Celltrion, Republic of Korea
  5. Imperial College London, United Kingdom
  6. Centers for Disease Control and Prevention, United States
  7. Scripps Research Institute, United States
  8. Mount Sinai Hospital, Canada
  9. University of Calgary, Canada

Abstract

Atherosclerosis preferentially occurs in arterial regions exposed to disturbed blood flow (d-flow), while regions exposed to stable flow (s-flow) are protected. The proatherogenic and atheroprotective effects of d-flow and s-flow are mediated in part by the global changes in endothelial cell gene expression, which regulates endothelial dysfunction, inflammation, and atherosclerosis. Previously, we identified Kallikrein-Related Peptidase 10 (Klk10, a secreted serine protease) as a flow-sensitive gene in mouse arterial endothelial cells, but its role in endothelial biology and atherosclerosis was unknown. Here, we show that KLK10 is upregulated under s-flow conditions and downregulated under d-flow conditions using in vivo& mouse models and in vitro studies with cultured endothelial cells (ECs). Single-cell RNA sequencing (scRNAseq) and scATAC sequencing (scATACseq) study using the partial carotid ligation mouse model showed flow-regulated Klk10 expression at the epigenomic and transcription levels. Functionally, KLK10 protected against d-flow-induced permeability dysfunction and inflammation in human artery ECs (HAECs), as determined by NFkB activation, expression of vascular cell adhesion molecule 1 (VCAM1) and intracellular adhesion molecule 1 (ICAM1), and monocyte adhesion. Further, treatment of mice in vivo with rKLK10 decreased arterial endothelial inflammation in d-flow regions. Additionally, rKLK10 injection or ultrasound-mediated transfection of Klk10-expressing plasmids inhibited atherosclerosis in Apoe-/- mice. Moreover, KLK10 expression was significantly reduced in human coronary arteries with advanced atherosclerotic plaques compared to those with less severe plaques. KLK10 is a flow-sensitive endothelial protein that serves as an anti-inflammatory, barrier-protective, and anti-atherogenic factor.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting file; Source Data files for all western blots and gels have been provided for all applicable figures.Previously Published Datasets: Endothelial reprogramming by disturbed flow revealed by single-cell RNAseq and chromatin accessibility study: Andueza A, Kumar S, Kim J, Kang DW, Mumme HL, Perez JI, Villa-Roel N, Jo H, 2020, https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA646233, NCBI Bioproject, PRJNA646233

The following previously published data sets were used

Article and author information

Author details

  1. Darian Williams

    Molecular and Systems Pharmacology Program, Emory University, Atlanta, United States
    Competing interests
    No competing interests declared.
  2. Marwa Mahmoud

    Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, United States
    Competing interests
    No competing interests declared.
  3. Renfa Liu

    Department of Biomedical Engineering, Peking University, Beijing, China
    Competing interests
    No competing interests declared.
  4. Aitor Andueza

    Coulter Department of Biomedical Engineering, Emory University, Atlanta, United States
    Competing interests
    No competing interests declared.
  5. Sandeep Kumar

    Coulter Department of Biomedical Engineering, Emory University, Atlanta, United States
    Competing interests
    No competing interests declared.
  6. Dong-Won Kang

    Coulter Department of Biomedical Engineering, Emory University, Atlanta, United States
    Competing interests
    No competing interests declared.
  7. Jiahui Zhang

    Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, United States
    Competing interests
    No competing interests declared.
  8. Ian Tamargo

    Molecular and Systems Pharmacology Program, Emory University, Atlanta, United States
    Competing interests
    No competing interests declared.
  9. Nicolas Villa-Roel

    Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2981-9330
  10. Kyung-In Baek

    Coulter Department of Biomedical Engineering, Emory University, Atlanta, United States
    Competing interests
    No competing interests declared.
  11. Hwakyoung Lee

    Celltrion, Incheon, Republic of Korea
    Competing interests
    Hwakyoung Lee, is affiliated with Celltrion. The author has no financial interests to declare..
  12. Yongjin An

    Celltrion, Incheon, Republic of Korea
    Competing interests
    Yongjin An, is affiliated with Celltrion. The author has no financial interests to declare..
  13. Leran Zhang

    Department of Chemistry, Imperial College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  14. Edward W Tate

    Department of Chemistry, Imperial College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  15. Pritha Bagchi

    Emory Integrated Proteomics Core, Emory University, Atlanta, United States
    Competing interests
    No competing interests declared.
  16. Jan Pohl

    Biotechnology Core Facility Branch, Centers for Disease Control and Prevention, Atlanta, United States
    Competing interests
    No competing interests declared.
  17. Laurent O Mosnier

    Department of Molecular Medicine, Scripps Research Institute, San Diego, United States
    Competing interests
    No competing interests declared.
  18. Eleftherios P Diamandis

    Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
    Competing interests
    Eleftherios P Diamandis, has consulted for Abbott diagnostics and Imaware Disgnostics. The author has no other competing interest to declare..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1589-820X
  19. Koichiro Mihara

    Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
    Competing interests
    No competing interests declared.
  20. Morley D Hollenberg

    Department of Physiology and Pharmacology, University of Calgary, Calgary, Canada
    Competing interests
    No competing interests declared.
  21. Zhifei Dai

    Department of Biomedical Engineering, Peking University, Beijing, China
    Competing interests
    No competing interests declared.
  22. Hanjoong Jo

    Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, United States
    For correspondence
    hjo@emory.edu
    Competing interests
    Hanjoong Jo, is the founder of FloKines Pharma..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1833-372X

Funding

National Heart, Lung, and Blood Institute (HL119798)

  • Hanjoong Jo

National Heart, Lung, and Blood Institute (HL145974)

  • Darian Williams

National Heart, Lung, and Blood Institute (HL139757)

  • Hanjoong Jo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Edward A Fisher, New York University Grossman School of Medicine, United States

Ethics

Animal experimentation: All animal studies were performed with male C57BL/6 or ApoE-/- mice (Jackson Laboratory), were approved by Institutional Animal Care and Use Committee by Emory University (PROTO201700428), and were performed in accordance with the established guidelines and regulations consistent with federal assurance.

Human subjects: Human coronary arteries were obtained from de-identified human hearts not suitable for cardiac transplantation donated to LifeLink of Georgia. Therefore, Emory University determined that this study was an IRB-exempt study.

Version history

  1. Received: July 28, 2021
  2. Preprint posted: August 10, 2021 (view preprint)
  3. Accepted: January 8, 2022
  4. Accepted Manuscript published: January 11, 2022 (version 1)
  5. Version of Record published: February 1, 2022 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,662
    views
  • 245
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Darian Williams
  2. Marwa Mahmoud
  3. Renfa Liu
  4. Aitor Andueza
  5. Sandeep Kumar
  6. Dong-Won Kang
  7. Jiahui Zhang
  8. Ian Tamargo
  9. Nicolas Villa-Roel
  10. Kyung-In Baek
  11. Hwakyoung Lee
  12. Yongjin An
  13. Leran Zhang
  14. Edward W Tate
  15. Pritha Bagchi
  16. Jan Pohl
  17. Laurent O Mosnier
  18. Eleftherios P Diamandis
  19. Koichiro Mihara
  20. Morley D Hollenberg
  21. Zhifei Dai
  22. Hanjoong Jo
(2022)
Stable flow-induced expression of KLK10 inhibits endothelial inflammation and atherosclerosis
eLife 11:e72579.
https://doi.org/10.7554/eLife.72579

Share this article

https://doi.org/10.7554/eLife.72579

Further reading

    1. Cell Biology
    Yoko Nakai-Futatsugi, Jianshi Jin ... Masayo Takahashi
    Research Article

    Retinal pigment epithelium (RPE) cells show heterogeneous levels of pigmentation when cultured in vitro. To know whether their color in appearance is correlated with the function of the RPE, we analyzed the color intensities of human-induced pluripotent stem cell-derived RPE cells (iPSC-RPE) together with the gene expression profile at the single-cell level. For this purpose, we utilized our recent invention, Automated Live imaging and cell Picking System (ALPS), which enabled photographing each cell before RNA-sequencing analysis to profile the gene expression of each cell. While our iPSC-RPE were categorized into four clusters by gene expression, the color intensity of iPSC-RPE did not project any specific gene expression profiles. We reasoned this by less correlation between the actual color and the gene expressions that directly define the level of pigmentation, from which we hypothesized the color of RPE cells may be a temporal condition not strongly indicating the functional characteristics of the RPE.

    1. Cancer Biology
    2. Cell Biology
    Savvas Nikolaou, Amelie Juin ... Laura M Machesky
    Research Article

    Pancreatic ductal adenocarcinoma carries a dismal prognosis, with high rates of metastasis and few treatment options. Hyperactivation of KRAS in almost all tumours drives RAC1 activation, conferring enhanced migratory and proliferative capacity as well as macropinocytosis. Macropinocytosis is well understood as a nutrient scavenging mechanism, but little is known about its functions in trafficking of signaling receptors. We find that CYRI-B is highly expressed in pancreatic tumours in a mouse model of KRAS and p53-driven pancreatic cancer. Deletion of Cyrib (the gene encoding CYRI-B protein) accelerates tumourigenesis, leading to enhanced ERK and JNK-induced proliferation in precancerous lesions, indicating a potential role as a buffer of RAC1 hyperactivation in early stages. However, as disease progresses, loss of CYRI-B inhibits metastasis. CYRI-B depleted tumour cells show reduced chemotactic responses to lysophosphatidic acid, a major driver of tumour spread, due to impaired macropinocytic uptake of the lysophosphatidic acid receptor-1. Overall, we implicate CYRI-B as a mediator of growth and signaling in pancreatic cancer, providing new insights into pathways controlling metastasis.