Nucleoporin107 mediates female sexual differentiation via Dsx

  1. Tikva Shore
  2. Tgst Levi
  3. Rachel Kalifa
  4. Amatzia Dreifuss
  5. Dina Rekler
  6. Ariella Weinberg-Shukron
  7. Yuval Nevo
  8. Tzofia Bialistoky
  9. Victoria Moyal
  10. Merav Yaffa Gold
  11. Shira Leebhoff
  12. David Zangen
  13. Girish Deshpande  Is a corresponding author
  14. Offer Gerlitz  Is a corresponding author
  1. The Hebrew University, Israel
  2. Hebrew University Hadassah Medical School, Israel
  3. The Hadassah Hebrew University Medical Center, Israel
  4. Hadassah Hebrew University Medical Center, Israel
  5. Princeton University, United States

Abstract

We recently identified a missense mutation in Nucleoporin107 (Nup107; D447N) underlying XX-ovarian-dysgenesis, a rare disorder characterized by underdeveloped and dysfunctional ovaries. Modeling of the human mutation in Drosophila or specific knockdown of Nup107 in the gonadal soma resulted in ovarian-dysgenesis-like phenotypes. Transcriptomic analysis identified the somatic sex-determination gene doublesex (dsx) as a target of Nup107. Establishing Dsx as a primary relevant target of Nup107, either loss or gain of Dsx in the gonadal soma is sufficient to mimic or rescue the phenotypes induced by Nup107 loss. Importantly, the aberrant phenotypes induced by compromising either Nup107 or dsx are reminiscent of BMP signaling hyperactivation. Remarkably, in this context, the metalloprotease AdamTS-A, a transcriptional target of both Dsx and Nup107, is necessary for the calibration of BMP signaling. As modulation of BMP signaling is a conserved critical determinant of soma-germline interaction, the sex and tissue specific deployment of Dsx-F by Nup107 seems crucial for the maintenance of the homeostatic balance between the germ cells and somatic gonadal cells.

Data availability

All raw RNA-seq data, as well as software versions and parameters, have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO Series accession number GSE141094

The following data sets were generated

Article and author information

Author details

  1. Tikva Shore

    Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7140-0226
  2. Tgst Levi

    Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9221-1873
  3. Rachel Kalifa

    Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Amatzia Dreifuss

    Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  5. Dina Rekler

    Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  6. Ariella Weinberg-Shukron

    Medical Genetics Institute, Hebrew University Hadassah Medical School, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  7. Yuval Nevo

    Bioinformatics Unit of the I-CORE Computation Center, The Hadassah Hebrew University Medical Center, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  8. Tzofia Bialistoky

    Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  9. Victoria Moyal

    Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  10. Merav Yaffa Gold

    Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9978-2262
  11. Shira Leebhoff

    Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  12. David Zangen

    Division of Pediatric Endocrinology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  13. Girish Deshpande

    Department of Molecular Biology, Princeton University, Princeton, United States
    For correspondence
    gdeshpande@princeton.edu
    Competing interests
    The authors declare that no competing interests exist.
  14. Offer Gerlitz

    Department of Developmental Biology and Cancer Research, The Hebrew University, Jerusalem, Israel
    For correspondence
    offerg@ekmd.huji.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1574-2088

Funding

Israel Science Foundation (1788/15)

  • David Zangen
  • Offer Gerlitz

Israel Science Foundation (2295/19)

  • David Zangen
  • Offer Gerlitz

National Institute of Health (093913)

  • Girish Deshpande

Ministry of Science and Technology

  • Tgst Levi

Ministry of Aliyah and Integration

  • Tgst Levi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Shore et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,063
    views
  • 137
    downloads
  • 4
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Tikva Shore
  2. Tgst Levi
  3. Rachel Kalifa
  4. Amatzia Dreifuss
  5. Dina Rekler
  6. Ariella Weinberg-Shukron
  7. Yuval Nevo
  8. Tzofia Bialistoky
  9. Victoria Moyal
  10. Merav Yaffa Gold
  11. Shira Leebhoff
  12. David Zangen
  13. Girish Deshpande
  14. Offer Gerlitz
(2022)
Nucleoporin107 mediates female sexual differentiation via Dsx
eLife 11:e72632.
https://doi.org/10.7554/eLife.72632

Share this article

https://doi.org/10.7554/eLife.72632

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Morgane Djebar, Isabelle Anselme ... Christine Vesque
    Research Article

    Cilia defects lead to scoliosis in zebrafish, but the underlying pathogenic mechanisms are poorly understood and may diverge depending on the mutated gene. Here, we dissected the mechanisms of scoliosis onset in a zebrafish mutant for the rpgrip1l gene encoding a ciliary transition zone protein. rpgrip1l mutant fish developed scoliosis with near-total penetrance but asynchronous onset in juveniles. Taking advantage of this asynchrony, we found that curvature onset was preceded by ventricle dilations and was concomitant to the perturbation of Reissner fiber polymerization and to the loss of multiciliated tufts around the subcommissural organ. Rescue experiments showed that Rpgrip1l was exclusively required in foxj1a-expressing cells to prevent axis curvature. Genetic interactions investigations ruled out Urp1/2 levels as a main driver of scoliosis in rpgrip1 mutants. Transcriptomic and proteomic studies identified neuroinflammation associated with increased Annexin levels as a potential mechanism of scoliosis development in rpgrip1l juveniles. Investigating the cell types associated with annexin2 over-expression, we uncovered astrogliosis, arising in glial cells surrounding the diencephalic and rhombencephalic ventricles just before scoliosis onset and increasing with time in severity. Anti-inflammatory drug treatment reduced scoliosis penetrance and severity and this correlated with reduced astrogliosis and macrophage/microglia enrichment around the diencephalic ventricle. Mutation of the cep290 gene encoding another transition zone protein also associated astrogliosis with scoliosis. Thus, we propose astrogliosis induced by perturbed ventricular homeostasis and associated with immune cell activation as a novel pathogenic mechanism of zebrafish scoliosis caused by cilia dysfunction.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Laura Massoz, David Bergemann ... Isabelle Manfroid
    Research Article

    Stimulation of pancreatic beta cell regeneration could be a therapeutic lead to treat diabetes. Unlike humans, the zebrafish can efficiently regenerate beta cells, notably from ductal pancreatic progenitors. To gain insight into the molecular pathways involved in this process, we established the transcriptomic profile of the ductal cells after beta cell ablation in the adult zebrafish. These data highlighted the protein phosphatase calcineurin (CaN) as a new potential modulator of beta cell regeneration. We showed that CaN overexpression abolished the regenerative response, leading to glycemia dysregulation. On the opposite, CaN inhibition increased ductal cell proliferation and subsequent beta cell regeneration. Interestingly, the enhanced proliferation of the progenitors was paradoxically coupled with their exhaustion. This suggests that the proliferating progenitors are next entering in differentiation. CaN appears as a guardian which prevents an excessive progenitor proliferation to preserve the pool of progenitors. Altogether, our findings reveal CaN as a key player in the balance between proliferation and differentiation to enable a proper beta cell regeneration.