PRC1 sustains the integrity of neural fate in the absence of PRC2 function

  1. Ayana Sawai
  2. Sarah Pfennig
  3. Milica Bulajić
  4. Alexander Miller
  5. Alireza Khodadadi-Jamayran
  6. Esteban Orlando Mazzoni
  7. Jeremy S Dasen  Is a corresponding author
  1. NYU School of Medicine, United States
  2. New York University, United States
  3. NYU School of Medcine, United States

Abstract

Polycomb repressive complexes (PRCs) 1 and 2 maintain stable cellular memories of early fate decisions by establishing heritable patterns of gene repression. PRCs repress transcription through histone modifications and chromatin compaction, but their roles in neuronal subtype diversification are poorly defined. We found that PRC1 is essential for the specification of segmentally-restricted spinal motor neuron (MN) subtypes, while PRC2 activity is dispensable to maintain MN positional identities during terminal differentiation. Mutation of the core PRC1 component Ring1 in mice leads to increased chromatin accessibility and ectopic expression of a broad variety of fates determinants, including Hox transcription factors, while neuronal class-specific features are maintained. Loss of MN subtype identities in Ring1 mutants is due to the suppression of Hox-dependent specification programs by derepressed Hox13 paralogs (Hoxa13, Hoxb13, Hoxc13, Hoxd13). These results indicate that PRC1 can function in the absence of de novo PRC2-dependent histone methylation to maintain chromatin topology and postmitotic neuronal fate.

Data availability

RNAseq and ATACseq data are available through GEO (GSE175503).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Ayana Sawai

    Department of Neuroscience and Physiology, NYU School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5446-4930
  2. Sarah Pfennig

    Department of Neuroscience and Physiology, NYU School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Milica Bulajić

    Department of Biology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Alexander Miller

    Department of Neuroscience and Physiology, NYU School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Alireza Khodadadi-Jamayran

    Applied Bioinformatics Laboratories, NYU School of Medcine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Esteban Orlando Mazzoni

    Department of Biology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8994-681X
  7. Jeremy S Dasen

    Department of Neuroscience and Physiology, NYU School of Medicine, New York, United States
    For correspondence
    Jeremy.Dasen@nyumc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9434-874X

Funding

National Institutes of Health (R35 NS116858)

  • Jeremy S Dasen

National Institutes of Health (R01 NS062822)

  • Jeremy S Dasen

National Institutes of Health (R01 NS097550)

  • Jeremy S Dasen

National Institutes of Health (NS 100897)

  • Esteban Orlando Mazzoni

National Institutes of Health (T32 GM007238)

  • Ayana Sawai

National Institutes of Health (F31 NS087772)

  • Ayana Sawai

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animals work was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Animal work was approved by the Institutional Animal Care and use Committee of the NYU School of Medicine in accordance to NIH guidelines.

Copyright

© 2022, Sawai et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,145
    views
  • 323
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ayana Sawai
  2. Sarah Pfennig
  3. Milica Bulajić
  4. Alexander Miller
  5. Alireza Khodadadi-Jamayran
  6. Esteban Orlando Mazzoni
  7. Jeremy S Dasen
(2022)
PRC1 sustains the integrity of neural fate in the absence of PRC2 function
eLife 11:e72769.
https://doi.org/10.7554/eLife.72769

Share this article

https://doi.org/10.7554/eLife.72769

Further reading

    1. Developmental Biology
    2. Evolutionary Biology
    Hope M Healey, Hayden B Penn ... William A Cresko
    Research Article

    Seahorses, pipefishes, and seadragons are fishes from the family Syngnathidae that have evolved extraordinary traits including male pregnancy, elongated snouts, loss of teeth, and dermal bony armor. The developmental genetic and cellular changes that led to the evolution of these traits are largely unknown. Recent syngnathid genome assemblies revealed suggestive gene content differences and provided the opportunity for detailed genetic analyses. We created a single-cell RNA sequencing atlas of Gulf pipefish embryos to understand the developmental basis of four traits: derived head shape, toothlessness, dermal armor, and male pregnancy. We completed marker gene analyses, built genetic networks, and examined the spatial expression of select genes. We identified osteochondrogenic mesenchymal cells in the elongating face that express regulatory genes bmp4, sfrp1a, and prdm16. We found no evidence for tooth primordia cells, and we observed re-deployment of osteoblast genetic networks in developing dermal armor. Finally, we found that epidermal cells expressed nutrient processing and environmental sensing genes, potentially relevant for the brooding environment. The examined pipefish evolutionary innovations are composed of recognizable cell types, suggesting that derived features originate from changes within existing gene networks. Future work addressing syngnathid gene networks across multiple stages and species is essential for understanding how the novelties of these fish evolved.

    1. Developmental Biology
    2. Genetics and Genomics
    Mehul Vora, Jonathan Dietz ... Cathy Savage-Dunn
    Research Article

    Smads and their transcription factor partners mediate the transcriptional responses of target cells to secreted ligands of the transforming growth factor-β (TGF-β) family, including those of the conserved bone morphogenetic protein (BMP) family, yet only a small number of direct target genes have been well characterized. In C. elegans, the BMP2/4 ortholog DBL-1 regulates multiple biological functions, including body size, via a canonical receptor-Smad signaling cascade. Here, we identify functional binding sites for SMA-3/Smad and its transcriptional partner SMA-9/Schnurri based on ChIP-seq peaks (identified by modEncode) and expression differences of nearby genes identified from RNA-seq analysis of corresponding mutants. We found that SMA-3 and SMA-9 have both overlapping and unique target genes. At a genome-wide scale, SMA-3/Smad acts as a transcriptional activator, whereas SMA-9/Schnurri direct targets include both activated and repressed genes. Mutations in sma-9 partially suppress the small body size phenotype of sma-3, suggesting some level of antagonism between these factors and challenging the prevailing model for Schnurri function. Functional analysis of target genes revealed a novel role in body size for genes involved in one-carbon metabolism and in the endoplasmic reticulum (ER) secretory pathway, including the disulfide reductase dpy-11. Our findings indicate that Smads and SMA-9/Schnurri have previously unappreciated complex genetic and genomic regulatory interactions that in turn regulate the secretion of extracellular components like collagen into the cuticle to mediate body size regulation.