Branched ubiquitin chain binding and deubiquitination by UCH37 facilitate proteasome clearance of stress-induced inclusions

  1. Aixin Song
  2. Zachary Hazlett
  3. Dulith Abeykoon
  4. Jeremy Dortch
  5. Andrew Dillon
  6. Justin Curtiss
  7. Sarah Bollinger Martinez
  8. Christopher P Hill
  9. Clinton Yu
  10. Lan Huang
  11. David Fushman
  12. Robert E Cohen
  13. Tingting Yao  Is a corresponding author
  1. Colorado State University, United States
  2. University of Maryland, United States
  3. University of Utah School of Medicine, United States
  4. University of California, Irvine, United States

Abstract

UCH37, also known as UCHL5, is a highly conserved deubiquitinating enzyme (DUB) that associates with the 26S proteasome. Recently it was reported that UCH37 activity is stimulated by branched ubiquitin chain architectures. To understand how UCH37 achieves its unique debranching specificity, we performed biochemical and NMR structural analyses and found that UCH37 is activated by contacts with the hydrophobic patches of both distal ubiquitins that emanate from a branched ubiquitin. In addition, RPN13, which recruits UCH37 to the proteasome, further enhances branched-chain specificity by restricting linear ubiquitin chains from having access to the UCH37 active site. In cultured human cells under conditions of proteolytic stress, we show that substrate clearance by the proteasome is promoted by both binding and deubiquitination of branched polyubiquitin by UCH37. Proteasomes containing UCH37(C88A), which is catalytically inactive, aberrantly retain polyubiquitinated species as well as the RAD23B substrate shuttle factor, suggesting a defect in recycling of the proteasome. These findings provide a foundation to understand how proteasome degradation of substrates modified by a unique ubiquitin chain architecture is aided by a DUB.

Data availability

All data contributed to the results in this manuscript are included in the manuscript and supporting files.

Article and author information

Author details

  1. Aixin Song

    Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4377-7528
  2. Zachary Hazlett

    Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
    Competing interests
    No competing interests declared.
  3. Dulith Abeykoon

    University of Maryland, College Park, United States
    Competing interests
    No competing interests declared.
  4. Jeremy Dortch

    Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
    Competing interests
    No competing interests declared.
  5. Andrew Dillon

    Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
    Competing interests
    No competing interests declared.
  6. Justin Curtiss

    Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3996-2659
  7. Sarah Bollinger Martinez

    Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
    Competing interests
    No competing interests declared.
  8. Christopher P Hill

    Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
    Competing interests
    Christopher P Hill, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6796-7740
  9. Clinton Yu

    University of California, Irvine, Irvine, United States
    Competing interests
    No competing interests declared.
  10. Lan Huang

    University of California, Irvine, Irvine, United States
    Competing interests
    No competing interests declared.
  11. David Fushman

    Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  12. Robert E Cohen

    Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
    Competing interests
    No competing interests declared.
  13. Tingting Yao

    Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
    For correspondence
    tingting.yao@colostate.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4101-9691

Funding

National Institute of General Medical Sciences (R01 GM115997)

  • Robert E Cohen

National Institute of General Medical Sciences (R21 GM135818)

  • Robert E Cohen

National Institute of General Medical Sciences (R01 GM065334)

  • David Fushman

National Institute of General Medical Sciences (R01 GM074830)

  • Lan Huang

National Institute of General Medical Sciences (R01 GM130144)

  • Lan Huang

National Institute of General Medical Sciences (R01 GM098401)

  • Tingting Yao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Song et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,984
    views
  • 295
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Aixin Song
  2. Zachary Hazlett
  3. Dulith Abeykoon
  4. Jeremy Dortch
  5. Andrew Dillon
  6. Justin Curtiss
  7. Sarah Bollinger Martinez
  8. Christopher P Hill
  9. Clinton Yu
  10. Lan Huang
  11. David Fushman
  12. Robert E Cohen
  13. Tingting Yao
(2021)
Branched ubiquitin chain binding and deubiquitination by UCH37 facilitate proteasome clearance of stress-induced inclusions
eLife 10:e72798.
https://doi.org/10.7554/eLife.72798

Share this article

https://doi.org/10.7554/eLife.72798

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Birol Cabukusta, Shalom Borst Pauwels ... Jacques Neefjes
    Research Article

    Numerous lipids are heterogeneously distributed among organelles. Most lipid trafficking between organelles is achieved by a group of lipid transfer proteins (LTPs) that carry lipids using their hydrophobic cavities. The human genome encodes many intracellular LTPs responsible for lipid trafficking and the function of many LTPs in defining cellular lipid levels and distributions is unclear. Here, we created a gene knockout library targeting 90 intracellular LTPs and performed whole-cell lipidomics analysis. This analysis confirmed known lipid disturbances and identified new ones caused by the loss of LTPs. Among these, we found major sphingolipid imbalances in ORP9 and ORP11 knockout cells, two proteins of previously unknown function in sphingolipid metabolism. ORP9 and ORP11 form a heterodimer to localize at the ER-trans-Golgi membrane contact sites, where the dimer exchanges phosphatidylserine (PS) for phosphatidylinositol-4-phosphate (PI(4)P) between the two organelles. Consequently, loss of either protein causes phospholipid imbalances in the Golgi apparatus that result in lowered sphingomyelin synthesis at this organelle. Overall, our LTP knockout library toolbox identifies various proteins in control of cellular lipid levels, including the ORP9-ORP11 heterodimer, which exchanges PS and PI(4)P at the ER-Golgi membrane contact site as a critical step in sphingomyelin synthesis in the Golgi apparatus.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Kien Xuan Ngo, Huong T Vu ... Taro Uyeda
    Research Article

    The mechanism underlying the preferential and cooperative binding of cofilin and the expansion of clusters toward the pointed-end side of actin filaments remains poorly understood. To address this, we conducted a principal component analysis based on available filamentous actin (F-actin) and C-actin (cofilins were excluded from cofilactin) structures and compared to monomeric G-actin. The results strongly suggest that C-actin, rather than F-ADP-actin, represented the favourable structure for binding preference of cofilin. High-speed atomic force microscopy explored that the shortened bare half helix adjacent to the cofilin clusters on the pointed end side included fewer actin protomers than normal helices. The mean axial distance (MAD) between two adjacent actin protomers along the same long-pitch strand within shortened bare half helices was longer (5.0–6.3 nm) than the MAD within typical helices (4.3–5.6 nm). The inhibition of torsional motion during helical twisting, achieved through stronger attachment to the lipid membrane, led to more pronounced inhibition of cofilin binding and cluster formation than the presence of inorganic phosphate (Pi) in solution. F-ADP-actin exhibited more naturally supertwisted half helices than F-ADP.Pi-actin, explaining how Pi inhibits cofilin binding to F-actin with variable helical twists. We propose that protomers within the shorter bare helical twists, either influenced by thermal fluctuation or induced allosterically by cofilin clusters, exhibit characteristics of C-actin-like structures with an elongated MAD, leading to preferential and cooperative binding of cofilin.