Branched ubiquitin chain binding and deubiquitination by UCH37 facilitate proteasome clearance of stress-induced inclusions

  1. Aixin Song
  2. Zachary Hazlett
  3. Dulith Abeykoon
  4. Jeremy Dortch
  5. Andrew Dillon
  6. Justin Curtiss
  7. Sarah Bollinger Martinez
  8. Christopher P Hill
  9. Clinton Yu
  10. Lan Huang
  11. David Fushman
  12. Robert E Cohen
  13. Tingting Yao  Is a corresponding author
  1. Colorado State University, United States
  2. University of Maryland, United States
  3. University of Utah School of Medicine, United States
  4. University of California, Irvine, United States

Abstract

UCH37, also known as UCHL5, is a highly conserved deubiquitinating enzyme (DUB) that associates with the 26S proteasome. Recently it was reported that UCH37 activity is stimulated by branched ubiquitin chain architectures. To understand how UCH37 achieves its unique debranching specificity, we performed biochemical and NMR structural analyses and found that UCH37 is activated by contacts with the hydrophobic patches of both distal ubiquitins that emanate from a branched ubiquitin. In addition, RPN13, which recruits UCH37 to the proteasome, further enhances branched-chain specificity by restricting linear ubiquitin chains from having access to the UCH37 active site. In cultured human cells under conditions of proteolytic stress, we show that substrate clearance by the proteasome is promoted by both binding and deubiquitination of branched polyubiquitin by UCH37. Proteasomes containing UCH37(C88A), which is catalytically inactive, aberrantly retain polyubiquitinated species as well as the RAD23B substrate shuttle factor, suggesting a defect in recycling of the proteasome. These findings provide a foundation to understand how proteasome degradation of substrates modified by a unique ubiquitin chain architecture is aided by a DUB.

Data availability

All data contributed to the results in this manuscript are included in the manuscript and supporting files.

Article and author information

Author details

  1. Aixin Song

    Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4377-7528
  2. Zachary Hazlett

    Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
    Competing interests
    No competing interests declared.
  3. Dulith Abeykoon

    University of Maryland, College Park, United States
    Competing interests
    No competing interests declared.
  4. Jeremy Dortch

    Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
    Competing interests
    No competing interests declared.
  5. Andrew Dillon

    Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
    Competing interests
    No competing interests declared.
  6. Justin Curtiss

    Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3996-2659
  7. Sarah Bollinger Martinez

    Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
    Competing interests
    No competing interests declared.
  8. Christopher P Hill

    Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
    Competing interests
    Christopher P Hill, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6796-7740
  9. Clinton Yu

    University of California, Irvine, Irvine, United States
    Competing interests
    No competing interests declared.
  10. Lan Huang

    University of California, Irvine, Irvine, United States
    Competing interests
    No competing interests declared.
  11. David Fushman

    Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
    Competing interests
    No competing interests declared.
  12. Robert E Cohen

    Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
    Competing interests
    No competing interests declared.
  13. Tingting Yao

    Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
    For correspondence
    tingting.yao@colostate.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4101-9691

Funding

National Institute of General Medical Sciences (R01 GM115997)

  • Robert E Cohen

National Institute of General Medical Sciences (R21 GM135818)

  • Robert E Cohen

National Institute of General Medical Sciences (R01 GM065334)

  • David Fushman

National Institute of General Medical Sciences (R01 GM074830)

  • Lan Huang

National Institute of General Medical Sciences (R01 GM130144)

  • Lan Huang

National Institute of General Medical Sciences (R01 GM098401)

  • Tingting Yao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Song et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Download links

Share this article

https://doi.org/10.7554/eLife.72798

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Stephanie M Stuteley, Ghader Bashiri
    Insight

    In the bacterium M. smegmatis, an enzyme called MftG allows the cofactor mycofactocin to transfer electrons released during ethanol metabolism to the electron transport chain.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Yi-Hsuan Lin, Tae Hun Kim ... Hue Sun Chan
    Research Article

    Liquid-liquid phase separation (LLPS) involving intrinsically disordered protein regions (IDRs) is a major physical mechanism for biological membraneless compartmentalization. The multifaceted electrostatic effects in these biomolecular condensates are exemplified here by experimental and theoretical investigations of the different salt- and ATP-dependent LLPSs of an IDR of messenger RNA-regulating protein Caprin1 and its phosphorylated variant pY-Caprin1, exhibiting, for example, reentrant behaviors in some instances but not others. Experimental data are rationalized by physical modeling using analytical theory, molecular dynamics, and polymer field-theoretic simulations, indicating that interchain ion bridges enhance LLPS of polyelectrolytes such as Caprin1 and the high valency of ATP-magnesium is a significant factor for its colocalization with the condensed phases, as similar trends are observed for other IDRs. The electrostatic nature of these features complements ATP’s involvement in π-related interactions and as an amphiphilic hydrotrope, underscoring a general role of biomolecular condensates in modulating ion concentrations and its functional ramifications.