Efficient differentiation of human primordial germ cells through geometric control reveals a key role for Nodal signaling

  1. Kyoung Jo
  2. Seth Teague
  3. Bohan Chen
  4. Hina Aftab Khan
  5. Emily Freeburne
  6. Hunter Li
  7. Bolin Li
  8. Ran Ran
  9. Jason R Spence
  10. Idse Heemskerk  Is a corresponding author
  1. University of Michigan Medical School, United States

Abstract

Human primordial germ cells (hPGCs) form around the time of implantation and are the precursors of eggs and sperm. Many aspects of hPGC specification remain poorly understood because of the inaccessibility of the early postimplantation human embryo for study. Here we show that micropatterned human pluripotent stem cells (hPSCs) treated with BMP4 give rise to hPGC-like cells (hPGCLC) and use these as a quantitatively reproducible and simple in vitro model to interrogate this important developmental event. We characterize micropatterned hPSCs up to 96h and show that hPGCLC populations are stable and continue to mature. By perturbing signaling during hPGCLC differentiation, we identify a previously unappreciated role for Nodal signaling and find that the relative timing and duration of BMP and Nodal signaling are critical parameters controlling the number of hPGCLCs. We formulate a mathematical model for a network of cross-repressive fates driven by Nodal and BMP signaling which predicts the measured fate patterns after signaling perturbations. Finally, we show that hPSC colony size dictates the efficiency of hPGCLC specification, which led us to dramatically improve the efficiency of hPGCLC differentiation.

Data availability

All code for data analysis and model simulations is available on github.com/idse/PGCsscRNA-seq data have been deposited in GEO under accession number GSE182057.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Kyoung Jo

    Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Seth Teague

    Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Bohan Chen

    Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9781-2982
  4. Hina Aftab Khan

    Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Emily Freeburne

    Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0344-577X
  6. Hunter Li

    Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Bolin Li

    Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Ran Ran

    Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jason R Spence

    Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7869-3992
  10. Idse Heemskerk

    Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
    For correspondence
    iheemske@umich.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8861-7712

Funding

Medical School, University of Michigan (startup)

  • Kyoung Jo
  • Seth Teague
  • Bohan Chen
  • Hina Aftab Khan
  • Emily Freeburne
  • Hunter Li
  • Bolin Li
  • Ran Ran
  • Idse Heemskerk

ETH Zürich Foundation (Branco Weiss Fellowship)

  • Hina Aftab Khan
  • Idse Heemskerk

National Institute of General Medical Sciences (R35 GM138346)

  • Seth Teague
  • Bohan Chen

Medical School, University of Michigan (Pioneer Fellowship)

  • Kyoung Jo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Martin Pera, The Jackson Laboratory, United States

Publication history

  1. Preprint posted: August 5, 2021 (view preprint)
  2. Received: August 5, 2021
  3. Accepted: April 7, 2022
  4. Accepted Manuscript published: April 8, 2022 (version 1)
  5. Version of Record published: May 13, 2022 (version 2)

Copyright

© 2022, Jo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,193
    Page views
  • 354
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kyoung Jo
  2. Seth Teague
  3. Bohan Chen
  4. Hina Aftab Khan
  5. Emily Freeburne
  6. Hunter Li
  7. Bolin Li
  8. Ran Ran
  9. Jason R Spence
  10. Idse Heemskerk
(2022)
Efficient differentiation of human primordial germ cells through geometric control reveals a key role for Nodal signaling
eLife 11:e72811.
https://doi.org/10.7554/eLife.72811

Further reading

    1. Developmental Biology
    2. Computational and Systems Biology
    Erik S Schild, Shivam Gupta ... Hendrik C Korswagen
    Research Article Updated

    Many developmental processes depend on precise temporal control of gene expression. We have previously established a theoretical framework for regulatory strategies that can govern such high temporal precision, but experimental validation of these predictions was still lacking. Here, we use the time-dependent expression of a Wnt receptor that controls neuroblast migration in Caenorhabditis elegans as a tractable system to study a robust, cell-intrinsic timing mechanism in vivo. Single-molecule mRNA quantification showed that the expression of the receptor increases non-linearly, a dynamic that is predicted to enhance timing precision over an unregulated, linear increase in timekeeper abundance. We show that this upregulation depends on transcriptional activation, providing in vivo evidence for a model in which the timing of receptor expression is regulated through an accumulating activator that triggers expression when a specific threshold is reached. This timing mechanism acts across a cell division that occurs in the neuroblast lineage and is influenced by the asymmetry of the division. Finally, we show that positive feedback of receptor expression through the canonical Wnt pathway enhances temporal precision. We conclude that robust cell-intrinsic timing can be achieved by combining regulation and feedback of the timekeeper gene.

    1. Computational and Systems Biology
    2. Neuroscience
    Jamie D Costabile, Kaarthik A Balakrishnan ... Martin Haesemeyer
    Research Article

    Brains are not engineered solutions to a well-defined problem but arose through selective pressure acting on random variation. It is therefore unclear how well a model chosen by an experimenter can relate neural activity to experimental conditions. Here we developed 'Model identification of neural encoding (MINE)'. MINE is an accessible framework using convolutional neural networks (CNN) to discover and characterize a model that relates aspects of tasks to neural activity. Although flexible, CNNs are difficult to interpret. We use Taylor decomposition approaches to understand the discovered model and how it maps task features to activity. We apply MINE to a published cortical dataset as well as experiments designed to probe thermoregulatory circuits in zebrafish. MINE allowed us to characterize neurons according to their receptive field and computational complexity, features which anatomically segregate in the brain. We also identified a new class of neurons that integrate thermosensory and behavioral information which eluded us previously when using traditional clustering and regression-based approaches.