Structural, mechanistic and physiological insights into phospholipase A-mediated membrane phospholipid degradation in Pseudomonas aeruginosa

  1. Florian Bleffert
  2. Joachim Granzin
  3. Muttalip Caliskan
  4. Stephan N Schott-Verdugo
  5. Meike Siebers
  6. Björn Thiele
  7. Laurence G Rahme
  8. Sebastian Felgner
  9. Peter Dörmann
  10. Holger Gohlke  Is a corresponding author
  11. Renu Batra-Safferling  Is a corresponding author
  12. Karl Erich-Jäger
  13. Filip Kovacic  Is a corresponding author
  1. Heinrich Heine University Düsseldorf, Germany
  2. Forschungszentrum Jülich GmbH, Germany
  3. University of Bonn, Germany
  4. Harvard Medical School, United States
  5. Helmholtz Centre for Infection Research, Germany

Abstract

Cells steadily adapt their membrane glycerophospholipid (GPL) composition to changing environmental and developmental conditions. While the regulation of membrane homeostasis via GPL synthesis in bacteria has been studied in detail, the mechanisms underlying the controlled degradation of endogenous GPLs remain unknown. Thus far, the function of intracellular phospholipases A (PLAs) in GPL remodeling (Lands cycle) in bacteria is not clearly established. Here, we identified the first cytoplasmic membrane-bound phospholipase A1 (PlaF) from Pseudomonas aeruginosa, which might be involved in the Lands cycle. PlaF is an important virulence factor, as the P. aeruginosa ΔplaF mutant showed strongly attenuated virulence in Galleria mellonella and macrophages. We present a 2.0-Å-resolution crystal structure of PlaF, the first structure that reveals homodimerization of a single-pass transmembrane (TM) full-length protein. PlaF dimerization, mediated solely through the intermolecular interactions of TM and juxtamembrane regions, inhibits its activity. The dimerization site and the catalytic sites are linked by an intricate ligand-mediated interaction network, which might explain the product (fatty acid) feedback inhibition observed with the purified PlaF protein. We used molecular dynamics simulations and configurational free energy computations to suggest a model of PlaF activation through a coupled monomerization and tilting of the monomer in the membrane, which constrains the active site cavity into contact with the GPL substrates. Thus, these data show the importance of the PlaF mediated GPL remodeling pathway for virulence and could pave the way for the development of novel therapeutics targeting PlaF.

Data availability

Diffraction data have been deposited in PDB under the accession code 6I8W.All data generated or analysed during this study are included in the manuscript and supporting file.Sequencing data are embedded in Fig. S1b.Source Data file "Table S1 - lipidome" has been provided for Figure 2. It contains the numerical data used to generate the figure 2c.Source data used to calculate the potentials of mean force and their corresponding simulation trajectory files shown in figure 7 and figure 7-supplementary figure 1 are accessible at the DSpace instance researchdata.hhu.de under DOI: 10.25838/d5p-31.

The following data sets were generated

Article and author information

Author details

  1. Florian Bleffert

    Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Duesseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Joachim Granzin

    Forschungszentrum Jülich GmbH, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Muttalip Caliskan

    Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Duesseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Stephan N Schott-Verdugo

    Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Duesseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Meike Siebers

    Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Björn Thiele

    Forschungszentrum Jülich GmbH, Jülich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Laurence G Rahme

    Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5374-4332
  8. Sebastian Felgner

    Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0030-2490
  9. Peter Dörmann

    Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5845-9370
  10. Holger Gohlke

    Heinrich Heine University Düsseldorf, Dusseldorf, Germany
    For correspondence
    gohlke@uni-duesseldorf.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8613-1447
  11. Renu Batra-Safferling

    Forschungszentrum Jülich GmbH, Jülich, Germany
    For correspondence
    r.batra-safferling@fz-juelich.de
    Competing interests
    The authors declare that no competing interests exist.
  12. Karl Erich-Jäger

    Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Duesseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Filip Kovacic

    Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Duesseldorf, Germany
    For correspondence
    f.kovacic@fz-juelich.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0313-427X

Funding

Deutsche Forschungsgemeinschaft (267205415)

  • Holger Gohlke
  • Karl Erich-Jäger
  • Filip Kovacic

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Bleffert et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,297
    views
  • 400
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Florian Bleffert
  2. Joachim Granzin
  3. Muttalip Caliskan
  4. Stephan N Schott-Verdugo
  5. Meike Siebers
  6. Björn Thiele
  7. Laurence G Rahme
  8. Sebastian Felgner
  9. Peter Dörmann
  10. Holger Gohlke
  11. Renu Batra-Safferling
  12. Karl Erich-Jäger
  13. Filip Kovacic
(2022)
Structural, mechanistic and physiological insights into phospholipase A-mediated membrane phospholipid degradation in Pseudomonas aeruginosa
eLife 11:e72824.
https://doi.org/10.7554/eLife.72824

Share this article

https://doi.org/10.7554/eLife.72824

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Katherine A Senn, Karli A Lipinski ... Aaron A Hoskins
    Research Article

    Pre-mRNA splicing is catalyzed in two steps: 5ʹ splice site (SS) cleavage and exon ligation. A number of proteins transiently associate with spliceosomes to specifically impact these steps (first and second step factors). We recently identified Fyv6 (FAM192A in humans) as a second step factor in Saccharomyces cerevisiae; however, we did not determine how widespread Fyv6’s impact is on the transcriptome. To answer this question, we have used RNA sequencing (RNA-seq) to analyze changes in splicing. These results show that loss of Fyv6 results in activation of non-consensus, branch point (BP) proximal 3ʹ SS transcriptome-wide. To identify the molecular basis of these observations, we determined a high-resolution cryo-electron microscopy (cryo-EM) structure of a yeast product complex spliceosome containing Fyv6 at 2.3 Å. The structure reveals that Fyv6 is the only second step factor that contacts the Prp22 ATPase and that Fyv6 binding is mutually exclusive with that of the first step factor Yju2. We then use this structure to dissect Fyv6 functional domains and interpret results of a genetic screen for fyv6Δ suppressor mutations. The combined transcriptomic, structural, and genetic studies allow us to propose a model in which Yju2/Fyv6 exchange facilitates exon ligation and Fyv6 promotes usage of consensus, BP distal 3ʹ SS.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Eyal Paz, Sahil Jain ... Abdussalam Azem
    Research Article

    TIMM50, an essential TIM23 complex subunit, is suggested to facilitate the import of ~60% of the mitochondrial proteome. In this study, we characterized a TIMM50 disease-causing mutation in human fibroblasts and noted significant decreases in TIM23 core protein levels (TIMM50, TIMM17A/B, and TIMM23). Strikingly, TIMM50 deficiency had no impact on the steady-state levels of most of its putative substrates, suggesting that even low levels of a functional TIM23 complex are sufficient to maintain the majority of TIM23 complex-dependent mitochondrial proteome. As TIMM50 mutations have been linked to severe neurological phenotypes, we aimed to characterize TIMM50 defects in manipulated mammalian neurons. TIMM50 knockdown in mouse neurons had a minor effect on the steady state level of most of the mitochondrial proteome, supporting the results observed in patient fibroblasts. Amongst the few affected TIM23 substrates, a decrease in the steady state level of components of the intricate oxidative phosphorylation and mitochondrial ribosome complexes was evident. This led to declined respiration rates in fibroblasts and neurons, reduced cellular ATP levels, and defective mitochondrial trafficking in neuronal processes, possibly contributing to the developmental defects observed in patients with TIMM50 disease. Finally, increased electrical activity was observed in TIMM50 deficient mice neuronal cells, which correlated with reduced levels of KCNJ10 and KCNA2 plasma membrane potassium channels, likely underlying the patients’ epileptic phenotype.