A genetic compensatory mechanism regulated by Jun and Mef2d modulates the expression of distinct class IIa Hdacs to ensure peripheral nerve myelination and repair

Abstract

The class IIa histone deacetylases (HDACs) have pivotal roles in the development of different tissues. Of this family, Schwann cells express Hdac4, 5 and 7 but not Hdac9. Here we show that a transcription factor regulated genetic compensatory mechanism within this family of proteins, blocks negative regulators of myelination ensuring peripheral nerve developmental myelination and remyelination after injury. Thus, when Hdac4 and 5 are knocked-out from Schwann cells in mice, a JUN-dependent mechanism induces the compensatory overexpression of Hdac7 permitting, although with a delay, the formation of the myelin sheath. When Hdac4,5 and 7 are simultaneously removed, the Myocyte-specific enhancer-factor d (MEF2D) binds to the promoter and induces the de novo expression of Hdac9, and although several melanocytic lineage genes are misexpressed and Remak bundle structure is disrupted, myelination proceeds after a long delay. Thus, our data unveil a finely tuned compensatory mechanism within the class IIa Hdac family, coordinated by distinct transcription factors, that guarantees the ability of Schwann cells to myelinate during development and remyelinate after nerve injury.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file

Article and author information

Author details

  1. Sergio Velasco-Aviles

    Instituto de Neurociencias de Alicante UMH-CSIC, Alicante, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. Nikiben Patel

    Laboratorio 117, Instituto de Neurociencias de Alicante UMH-CSIC, San Juan, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0129-7622
  3. Angeles Casillas-Bajo

    Instituto de Neurociencias de Alicante UMH-CSIC, Alicante, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Laura Frutos-Rincón

    Instituto de Neurociencias de Alicante UMH-CSIC, Alicante, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Enrique Velasco-Serna

    Instituto de Neurociencias de Alicante UMH-CSIC, Alicante, Spain
    Competing interests
    The authors declare that no competing interests exist.
  6. Juana Gallar

    Instituto de Neurociencias de Alicante UMH-CSIC, Alicante, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Peter Arthur-Farraj

    Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1239-9392
  8. Jose A Gomez-Sanchez

    Instituto de Neurociencias de Alicante UMH-CSIC, Alicante, Spain
    For correspondence
    j.gomez@umh.es
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6746-1800
  9. Hugo Cabedo

    Instituto de Neurociencias de Alicante UMH-CSIC, Alicante, Spain
    For correspondence
    hugo.cabedo@umh.es
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1322-6290

Funding

Ministerio de Economía y Competitividad (BFU2016-75864R)

  • Hugo Cabedo

Ministerio de Economía y Competitividad (PID2019-109762RB-I00)

  • Hugo Cabedo

ISABIAL (UGP18-257)

  • Hugo Cabedo

ISABIAL (UGP-2019-128)

  • Hugo Cabedo

Conselleria de Cultura, Educación y Ciencia, Generalitat Valenciana (PROMETEO 2018/114)

  • Juana Gallar
  • Hugo Cabedo

Conselleria de Cultura, Educación y Ciencia, Generalitat Valenciana (ACIF/2 017/169)

  • Laura Frutos-Rincón

Ministerio de Educación, Cultura y Deporte (FPU16/00283)

  • Enrique Velasco-Serna

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal work was conducted according to European Union guidelines and with protocols approved by the Comité de Bioética y Bioseguridad del Instituto de Neurociencias de Alicante, Universidad Hernández de Elche and Consejo Superior de Investigaciones Científicas (http://in.umh.es/). Reference number for the aproved protocol: 2017/VSC/PEA/00022 tipo 2.

Copyright

© 2022, Velasco-Aviles et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,577
    views
  • 244
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sergio Velasco-Aviles
  2. Nikiben Patel
  3. Angeles Casillas-Bajo
  4. Laura Frutos-Rincón
  5. Enrique Velasco-Serna
  6. Juana Gallar
  7. Peter Arthur-Farraj
  8. Jose A Gomez-Sanchez
  9. Hugo Cabedo
(2022)
A genetic compensatory mechanism regulated by Jun and Mef2d modulates the expression of distinct class IIa Hdacs to ensure peripheral nerve myelination and repair
eLife 11:e72917.
https://doi.org/10.7554/eLife.72917

Share this article

https://doi.org/10.7554/eLife.72917

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.

    1. Cell Biology
    Yue Miao, Yongtao Du ... Mei Ding
    Research Article

    The spatiotemporal transition of small GTPase Rab5 to Rab7 is crucial for early-to-late endosome maturation, yet the precise mechanism governing Rab5-to-Rab7 switching remains elusive. USP8, a ubiquitin-specific protease, plays a prominent role in the endosomal sorting of a wide range of transmembrane receptors and is a promising target in cancer therapy. Here, we identified that USP8 is recruited to Rab5-positive carriers by Rabex5, a guanine nucleotide exchange factor (GEF) for Rab5. The recruitment of USP8 dissociates Rabex5 from early endosomes (EEs) and meanwhile promotes the recruitment of the Rab7 GEF SAND-1/Mon1. In USP8-deficient cells, the level of active Rab5 is increased, while the Rab7 signal is decreased. As a result, enlarged EEs with abundant intraluminal vesicles accumulate and digestive lysosomes are rudimentary. Together, our results reveal an important and unexpected role of a deubiquitinating enzyme in endosome maturation.