A genetic compensatory mechanism regulated by Jun and Mef2d modulates the expression of distinct class IIa Hdacs to ensure peripheral nerve myelination and repair

Abstract

The class IIa histone deacetylases (HDACs) have pivotal roles in the development of different tissues. Of this family, Schwann cells express Hdac4, 5 and 7 but not Hdac9. Here we show that a transcription factor regulated genetic compensatory mechanism within this family of proteins, blocks negative regulators of myelination ensuring peripheral nerve developmental myelination and remyelination after injury. Thus, when Hdac4 and 5 are knocked-out from Schwann cells in mice, a JUN-dependent mechanism induces the compensatory overexpression of Hdac7 permitting, although with a delay, the formation of the myelin sheath. When Hdac4,5 and 7 are simultaneously removed, the Myocyte-specific enhancer-factor d (MEF2D) binds to the promoter and induces the de novo expression of Hdac9, and although several melanocytic lineage genes are misexpressed and Remak bundle structure is disrupted, myelination proceeds after a long delay. Thus, our data unveil a finely tuned compensatory mechanism within the class IIa Hdac family, coordinated by distinct transcription factors, that guarantees the ability of Schwann cells to myelinate during development and remyelinate after nerve injury.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting file

Article and author information

Author details

  1. Sergio Velasco-Aviles

    Instituto de Neurociencias de Alicante UMH-CSIC, Alicante, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. Nikiben Patel

    Laboratorio 117, Instituto de Neurociencias de Alicante UMH-CSIC, San Juan, Spain
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0129-7622
  3. Angeles Casillas-Bajo

    Instituto de Neurociencias de Alicante UMH-CSIC, Alicante, Spain
    Competing interests
    The authors declare that no competing interests exist.
  4. Laura Frutos-Rincón

    Instituto de Neurociencias de Alicante UMH-CSIC, Alicante, Spain
    Competing interests
    The authors declare that no competing interests exist.
  5. Enrique Velasco-Serna

    Instituto de Neurociencias de Alicante UMH-CSIC, Alicante, Spain
    Competing interests
    The authors declare that no competing interests exist.
  6. Juana Gallar

    Instituto de Neurociencias de Alicante UMH-CSIC, Alicante, Spain
    Competing interests
    The authors declare that no competing interests exist.
  7. Peter Arthur-Farraj

    Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1239-9392
  8. Jose A Gomez-Sanchez

    Instituto de Neurociencias de Alicante UMH-CSIC, Alicante, Spain
    For correspondence
    j.gomez@umh.es
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6746-1800
  9. Hugo Cabedo

    Instituto de Neurociencias de Alicante UMH-CSIC, Alicante, Spain
    For correspondence
    hugo.cabedo@umh.es
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1322-6290

Funding

Ministerio de Economía y Competitividad (BFU2016-75864R)

  • Hugo Cabedo

Ministerio de Economía y Competitividad (PID2019-109762RB-I00)

  • Hugo Cabedo

ISABIAL (UGP18-257)

  • Hugo Cabedo

ISABIAL (UGP-2019-128)

  • Hugo Cabedo

Conselleria de Cultura, Educación y Ciencia, Generalitat Valenciana (PROMETEO 2018/114)

  • Juana Gallar
  • Hugo Cabedo

Conselleria de Cultura, Educación y Ciencia, Generalitat Valenciana (ACIF/2 017/169)

  • Laura Frutos-Rincón

Ministerio de Educación, Cultura y Deporte (FPU16/00283)

  • Enrique Velasco-Serna

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal work was conducted according to European Union guidelines and with protocols approved by the Comité de Bioética y Bioseguridad del Instituto de Neurociencias de Alicante, Universidad Hernández de Elche and Consejo Superior de Investigaciones Científicas (http://in.umh.es/). Reference number for the aproved protocol: 2017/VSC/PEA/00022 tipo 2.

Copyright

© 2022, Velasco-Aviles et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,640
    views
  • 250
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sergio Velasco-Aviles
  2. Nikiben Patel
  3. Angeles Casillas-Bajo
  4. Laura Frutos-Rincón
  5. Enrique Velasco-Serna
  6. Juana Gallar
  7. Peter Arthur-Farraj
  8. Jose A Gomez-Sanchez
  9. Hugo Cabedo
(2022)
A genetic compensatory mechanism regulated by Jun and Mef2d modulates the expression of distinct class IIa Hdacs to ensure peripheral nerve myelination and repair
eLife 11:e72917.
https://doi.org/10.7554/eLife.72917

Share this article

https://doi.org/10.7554/eLife.72917

Further reading

    1. Cell Biology
    2. Developmental Biology
    Pavan K Nayak, Arul Subramanian, Thomas F Schilling
    Research Article Updated

    Mechanical forces play a critical role in tendon development and function, influencing cell behavior through mechanotransduction signaling pathways and subsequent extracellular matrix (ECM) remodeling. Here, we investigate the molecular mechanisms by which tenocytes in developing zebrafish embryos respond to muscle contraction forces during the onset of swimming and cranial muscle activity. Using genome-wide bulk RNA sequencing of FAC-sorted tenocytes we identify novel tenocyte markers and genes involved in tendon mechanotransduction. Embryonic tendons show dramatic changes in expression of matrix remodeling associated 5b (mxra5b), matrilin 1 (matn1), and the transcription factor kruppel-like factor 2a (klf2a), as muscles start to contract. Using embryos paralyzed either by loss of muscle contractility or neuromuscular stimulation we confirm that muscle contractile forces influence the spatial and temporal expression patterns of all three genes. Quantification of these gene expression changes across tenocytes at multiple tendon entheses and myotendinous junctions reveals that their responses depend on force intensity, duration, and tissue stiffness. These force-dependent feedback mechanisms in tendons, particularly in the ECM, have important implications for improved treatments of tendon injuries and atrophy.

    1. Cancer Biology
    2. Cell Biology
    Ida Marie Boisen, Nadia Krarup Knudsen ... Martin Blomberg Jensen
    Research Article

    Testicular microcalcifications consist of hydroxyapatite and have been associated with an increased risk of testicular germ cell tumors (TGCTs) but are also found in benign cases such as loss-of-function variants in the phosphate transporter SLC34A2. Here, we show that fibroblast growth factor 23 (FGF23), a regulator of phosphate homeostasis, is expressed in testicular germ cell neoplasia in situ (GCNIS), embryonal carcinoma (EC), and human embryonic stem cells. FGF23 is not glycosylated in TGCTs and therefore cleaved into a C-terminal fragment which competitively antagonizes full-length FGF23. Here, Fgf23 knockout mice presented with marked calcifications in the epididymis, spermatogenic arrest, and focally germ cells expressing the osteoblast marker Osteocalcin (gene name: Bglap, protein name). Moreover, the frequent testicular microcalcifications in mice with no functional androgen receptor and lack of circulating gonadotropins are associated with lower Slc34a2 and higher Bglap/Slc34a1 (protein name: NPT2a) expression compared with wild-type mice. In accordance, human testicular specimens with microcalcifications also have lower SLC34A2 and a subpopulation of germ cells express phosphate transporter NPT2a, Osteocalcin, and RUNX2 highlighting aberrant local phosphate handling and expression of bone-specific proteins. Mineral disturbance in vitro using calcium or phosphate treatment induced deposition of calcium phosphate in a spermatogonial cell line and this effect was fully rescued by the mineralization inhibitor pyrophosphate. In conclusion, testicular microcalcifications arise secondary to local alterations in mineral homeostasis, which in combination with impaired Sertoli cell function and reduced levels of mineralization inhibitors due to high alkaline phosphatase activity in GCNIS and TGCTs facilitate osteogenic-like differentiation of testicular cells and deposition of hydroxyapatite.