Arginine-vasopressin mediates counter-regulatory glucagon release and is diminished in type 1 diabetes

  1. Angela Kim
  2. Jakob G Knudsen
  3. Joseph C Madara
  4. Anna Benrick
  5. Thomas Hill
  6. Lina Abdul-Kadir
  7. Joely A Kellard
  8. Lisa Mellander
  9. Caroline Miranda
  10. Haopeng Lin
  11. Timothy James
  12. Kinga Suba
  13. Aliya F Spigelman
  14. Yanling Wu
  15. Patrick E Macdonald
  16. Ingrid Wernstedt Asterholm
  17. Tore Magnussen
  18. Mikkel Christensen
  19. Tina Visboll
  20. Victoria Salem
  21. Filip K Knop
  22. Patrik Rorsman
  23. Bradford B Lowell
  24. Linford JB Briant  Is a corresponding author
  1. Beth Israel Deaconess Medical Center, United States
  2. University of Copenhagen, Denmark
  3. University of Gothenburg, Sweden
  4. University of Oxford, United Kingdom
  5. University of Alberta, Canada
  6. Oxford University Hospitals, United Kingdom
  7. Imperial College London, United Kingdom

Abstract

Insulin-induced hypoglycemia is a major barrier to the treatment of type-1 diabetes (T1D). Accordingly, it is important that we understand the mechanisms regulating the circulating levels of glucagon - the body's principal blood glucose-elevating hormone which is secreted from alpha-cells of the pancreatic islets. Varying glucose over the range of concentrations that occur physiologically between the fed and fuel-deprived states (from 8 to 4 mM) has no significant effect on glucagon secretion in the perfused mouse pancreas or in isolated mouse islets (in vitro) and yet associates with dramatic changes in plasma glucagon in vivo. The identity of the systemic factor(s) that stimulates glucagon secretion remains unknown. Here, we show that arginine-vasopressin (AVP), secreted from the posterior pituitary, stimulates glucagon secretion. Glucagon-secreting alpha-cells express high levels of the vasopressin 1b receptor gene (Avpr1b). Activation of AVP neurons in vivo increased circulating copeptin (the C-terminal segment of the AVP precursor peptide, a stable surrogate marker of AVP) and increased blood glucose; effects blocked by pharmacological antagonism of either the glucagon receptor or vasopressin 1b receptor. AVP also mediates the stimulatory effects of hypoglycemia produced by exogenous insulin and 2-deoxy-D-glucose on glucagon secretion. We show that the A1/C1 neurons of the medulla oblongata drive AVP neuron activation in response to insulin-induced hypoglycemia. Exogenous injection of AVP in vivo increased cytoplasmic Ca2+ in alpha-cells (implanted into the anterior chamber of the eye) and glucagon release. Hypoglycemia also increases circulating levels of AVP in humans and this hormone stimulates glucagon secretion from isolated human islets. In patients with T1D, hypoglycemia failed to increase both plasma copeptin and glucagon levels. These findings suggest that AVP is a physiological systemic regulator of glucagon secretion and that this mechanism becomes impaired in T1D.

Data availability

The study data are available as a supplementary file.

Article and author information

Author details

  1. Angela Kim

    Medicine, Beth Israel Deaconess Medical Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9475-0798
  2. Jakob G Knudsen

    University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  3. Joseph C Madara

    Department of Medicine, Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Anna Benrick

    University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4616-6789
  5. Thomas Hill

    University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Lina Abdul-Kadir

    University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Joely A Kellard

    University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0822-1460
  8. Lisa Mellander

    University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  9. Caroline Miranda

    University of Gothenburg, Gotheburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  10. Haopeng Lin

    University of Alberta, Edmonton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  11. Timothy James

    Clinical Biochemstry, Oxford University Hospitals, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Kinga Suba

    Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Aliya F Spigelman

    University of Alberta, Edmonton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  14. Yanling Wu

    University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  15. Patrick E Macdonald

    University of Alberta, Edmonton, Canada
    Competing interests
    The authors declare that no competing interests exist.
  16. Ingrid Wernstedt Asterholm

    University of Gothenburg, Gothenburg, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0755-5784
  17. Tore Magnussen

    University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  18. Mikkel Christensen

    University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  19. Tina Visboll

    University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  20. Victoria Salem

    Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  21. Filip K Knop

    University of Copenhagen, Copenhagen, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  22. Patrik Rorsman

    University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7578-0767
  23. Bradford B Lowell

    Department of Medicine, Division of Endocrinology, Beth Israel Deaconess Medical Center, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0436-3760
  24. Linford JB Briant

    University of Oxford, Oxford, United Kingdom
    For correspondence
    linford.briant@ocdem.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3619-3177

Funding

Wellcome Trust (201325/Z/16/Z)

  • Linford JB Briant

National Institutes of Health (F31 DK109575)

  • Angela Kim

Diabetes UK ((Harry Keen Clinical Fellowship))

  • Victoria Salem

Diabetesförbundet

  • Patrik Rorsman

H2020 European Research Council (322620)

  • Patrik Rorsman

Leona M. and Harry B. Helmsley Charitable Trust

  • Patrik Rorsman
  • Linford JB Briant

Vetenskapsrådet ((Swedish Research Council))

  • Ingrid Wernstedt Asterholm
  • Patrik Rorsman

Wellcome Trust (095531)

  • Patrik Rorsman

Wellcome Trust (884655)

  • Patrik Rorsman

Canadian Institutes of Health Research (148451)

  • Patrick E Macdonald

Knut och Alice Wallenbergs Stiftelse

  • Patrik Rorsman

National Institutes of Health (R01 DK075632,R01 DK089044,R01 DK111401,R01 DK096010,P30 DK046200,P30 DK057521)

  • Bradford B Lowell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were conducted in strict accordance to regulations enforced by the research institution. Experiments conducted in the UK were done so in accordance with the UK Animals Scientific Procedures Act (1986) (P0A6474AE, P0FA927F8) and University of Oxford and Imperial College London ethical guidelines, and were approved by the local Ethical Committee. All animal care and experimental procedures conducted in the U.S.A. were approved by the Beth Israel Deaconess Medical Center Institutional Animal Care and Use Committee. Animal experiments conducted in Goteborg University were approved by a local Ethics Committee.

Human subjects: Ethics statements are given in the Methods as follows:Clamping studies were conducted at Gentofte Hospital, University of Copenhagen. The studies were approved by the Scientific-Ethical Committee of the Capital Region of Denmark (registration no. H-D-2009-0078) and was conducted according to the principles of the Declaration of Helsinki (fifth revision, Edinburgh, 2000).Human pancreatic islets were isolated, with ethical approval and clinical consent, at the Diabetes Research and Wellness Foundation Human Islet Isolation Facility (OCDEM, Oxford, UK) or Alberta Diabetes Institute IsletCore (University of Alberta, AB, Canada).

Copyright

© 2021, Kim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,180
    views
  • 352
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Angela Kim
  2. Jakob G Knudsen
  3. Joseph C Madara
  4. Anna Benrick
  5. Thomas Hill
  6. Lina Abdul-Kadir
  7. Joely A Kellard
  8. Lisa Mellander
  9. Caroline Miranda
  10. Haopeng Lin
  11. Timothy James
  12. Kinga Suba
  13. Aliya F Spigelman
  14. Yanling Wu
  15. Patrick E Macdonald
  16. Ingrid Wernstedt Asterholm
  17. Tore Magnussen
  18. Mikkel Christensen
  19. Tina Visboll
  20. Victoria Salem
  21. Filip K Knop
  22. Patrik Rorsman
  23. Bradford B Lowell
  24. Linford JB Briant
(2021)
Arginine-vasopressin mediates counter-regulatory glucagon release and is diminished in type 1 diabetes
eLife 10:e72919.
https://doi.org/10.7554/eLife.72919

Share this article

https://doi.org/10.7554/eLife.72919

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bethany M Bartlett, Yatendra Kumar ... Wendy A Bickmore
    Research Article Updated

    During oncogene-induced senescence there are striking changes in the organisation of heterochromatin in the nucleus. This is accompanied by activation of a pro-inflammatory gene expression programme – the senescence-associated secretory phenotype (SASP) – driven by transcription factors such as NF-κB. The relationship between heterochromatin re-organisation and the SASP has been unclear. Here, we show that TPR, a protein of the nuclear pore complex basket required for heterochromatin re-organisation during senescence, is also required for the very early activation of NF-κB signalling during the stress-response phase of oncogene-induced senescence. This is prior to activation of the SASP and occurs without affecting NF-κB nuclear import. We show that TPR is required for the activation of innate immune signalling at these early stages of senescence and we link this to the formation of heterochromatin-enriched cytoplasmic chromatin fragments thought to bleb off from the nuclear periphery. We show that HMGA1 is also required for cytoplasmic chromatin fragment formation. Together these data suggest that re-organisation of heterochromatin is involved in altered structural integrity of the nuclear periphery during senescence, and that this can lead to activation of cytoplasmic nucleic acid sensing, NF-κB signalling, and activation of the SASP.

    1. Cell Biology
    John Yong, Jacqueline E Villalta ... Calvin H Jan
    Research Article

    Protein aggregation increases during aging and is a pathological hallmark of many age-related diseases. Protein homeostasis (proteostasis) depends on a core network of factors directly influencing protein production, folding, trafficking, and degradation. Cellular proteostasis also depends on the overall composition of the proteome and numerous environmental variables. Modulating this cellular proteostasis state can influence the stability of multiple endogenous proteins, yet the factors contributing to this state remain incompletely characterized. Here, we performed genome-wide CRISPRi screens to elucidate the modulators of proteostasis state in mammalian cells, using a fluorescent dye to monitor endogenous protein aggregation. These screens identified known components of the proteostasis network and uncovered a novel link between protein and lipid homeostasis. Increasing lipid uptake and/or disrupting lipid metabolism promotes the accumulation of sphingomyelins and cholesterol esters and drives the formation of detergent-insoluble protein aggregates at the lysosome. Proteome profiling of lysosomes revealed ESCRT accumulation, suggesting disruption of ESCRT disassembly, lysosomal membrane repair, and microautophagy. Lipid dysregulation leads to lysosomal membrane permeabilization but does not otherwise impact fundamental aspects of lysosomal and proteasomal functions. Together, these results demonstrate that lipid dysregulation disrupts ESCRT function and impairs proteostasis.