Task-related hemodynamic responses in human early visual cortex are modulated by task difficulty and behavioral performance

  1. Charlie S Burlingham  Is a corresponding author
  2. Minyoung Ryoo
  3. Zvi N Roth
  4. Saghar Mirbagheri
  5. David J Heeger
  6. Elisha Merriam
  1. New York University, United States
  2. National Institute of Mental Health, United States
  3. University of Washington, United States
  4. National Institutes of Health, United States

Abstract

Early visual cortex exhibits widespread hemodynamic responses in the absence of visual stimulation, which are entrained to the timing of a task and not predicted by local spiking or local field potential (LFP). Such task-related responses ('TRRs') covary with reward magnitude and physiological signatures of arousal. It is unknown, however, if TRRs change on a trial-to-trial basis according to behavioral performance and task difficulty. If so, this would suggest that TRRs reflect arousal on a trial-to-trial timescale and covary with critical task and behavioral variables. We measured fMRI-BOLD responses in the early visual cortex of human observers performing an orientation discrimination task consisting of separate easy and hard runs of trials. Stimuli were presented in a small portion of one hemifield, but the fMRI response was measured in the ipsilateral hemisphere, far from the stimulus representation and focus of spatial attention. TRRs scaled in amplitude with task difficulty, behavioral accuracy, reaction time, and lapses across trials. These modulations were not explained by the influence of respiration, cardiac activity, or head movement on the fMRI signal. Similar modulations with task difficulty and behavior were observed in pupil size. These results suggest that TRRs reflect arousal and behavior on the timescale of individual trials.

Data availability

All data and code are available at osf.io/8fp35 (DOI: 10.17605/OSF.IO/8FP35)

The following data sets were generated

Article and author information

Author details

  1. Charlie S Burlingham

    Department of Psychology, New York University, New York, United States
    For correspondence
    charlie.burlingham@nyu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9286-2091
  2. Minyoung Ryoo

    Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Zvi N Roth

    Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Saghar Mirbagheri

    University of Washington, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. David J Heeger

    Department of Psychology, New York University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3282-9898
  6. Elisha Merriam

    Laboratory of Brain and Cognition, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2787-566X

Funding

National Eye Institute (R01-EY025330)

  • David J Heeger

National Institute of Mental Health (ZIA-MH-002909)

  • Elisha Merriam

National Eye Institute (T32-EY007136)

  • Charlie S Burlingham

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Informed consent, and consent to publish, was obtained from all human participants. The consent and experimental protocol were in compliance with the safety guidelines for MRI research, and were approved by both the University Committee on Activities involving Human Subjects at New York University (RB-FY2016-158), and the Institutional Review Board at the National Institutes of Health (93-M-0170, ClinicalTrials.gov identifier: NCT00001360).

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,251
    views
  • 187
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Charlie S Burlingham
  2. Minyoung Ryoo
  3. Zvi N Roth
  4. Saghar Mirbagheri
  5. David J Heeger
  6. Elisha Merriam
(2022)
Task-related hemodynamic responses in human early visual cortex are modulated by task difficulty and behavioral performance
eLife 11:e73018.
https://doi.org/10.7554/eLife.73018

Share this article

https://doi.org/10.7554/eLife.73018