Abstract

Tumour spheroids are common in vitro experimental models of avascular tumour growth. Compared with traditional two-dimensional culture, tumour spheroids more closely mimic the avascular tumour microenvironment where spatial differences in nutrient availability strongly influence growth. We show that spheroids initiated using significantly different numbers of cells grow to similar limiting sizes, suggesting that avascular tumours have a limiting structure; in agreement with untested predictions of classical mathematical models of tumour spheroids. We develop a novel mathematical and statistical framework to study the structure of tumour spheroids seeded from cells transduced with fluorescent cell cycle indicators, enabling us to discriminate between arrested and cycling cells and identify an arrested region. Our analysis shows that transient spheroid structure is independent of initial spheroid size, and the limiting structure can be independent of seeding density. Standard experimental protocols compare spheroid size as a function of time; however, our analysis suggests that comparing spheroid structure as a function of overall size produces results that are relatively insensitive to variability in spheroid size. Our experimental observations are made using two melanoma cell lines, but our modelling framework applies across a wide range of spheroid culture conditions and cell lines.

Data availability

Code, data, and interactive figures are available as a Julia module on GitHub (https://github.com/ap-browning/Spheroids). Code used to process the experimental images is available on Zenodo (https://doi.org/10.5281/zenodo.5121093).

The following data sets were generated

Article and author information

Author details

  1. Alexander P Browning

    School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  2. Jesse A Sharp

    School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Ryan J Murphy

    School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Gency Gunasingh

    The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Brodie Lawson

    School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Kevin Burrage

    School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Nikolas K Haass

    4The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3928-5360
  8. Matthew Simpson

    School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
    For correspondence
    matthew.simpson@qut.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6254-313X

Funding

Australian Research Council (DP200100177)

  • Nikolas K Haass
  • Matthew Simpson

ARC Centre of Excellence for Mathematical and Statistical Frontiers (CE140100049)

  • Alexander P Browning
  • Jesse A Sharp

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Browning et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,143
    views
  • 497
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexander P Browning
  2. Jesse A Sharp
  3. Ryan J Murphy
  4. Gency Gunasingh
  5. Brodie Lawson
  6. Kevin Burrage
  7. Nikolas K Haass
  8. Matthew Simpson
(2021)
Quantitative analysis of tumour spheroid structure
eLife 10:e73020.
https://doi.org/10.7554/eLife.73020

Share this article

https://doi.org/10.7554/eLife.73020

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Rosalyn W Sayaman, Masaru Miyano ... Mark LaBarge
    Research Article

    Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.

    1. Cancer Biology
    Jae Hun Shin, Jooyoung Park ... Alfred LM Bothwell
    Research Article

    Metastasis is the leading cause of cancer-related mortality. Paneth cells provide stem cell niche factors in homeostatic conditions, but the underlying mechanisms of cancer stem cell niche development are unclear. Here, we report that Dickkopf-2 (DKK2) is essential for the generation of cancer cells with Paneth cell properties during colon cancer metastasis. Splenic injection of Dkk2 knockout (KO) cancer organoids into C57BL/6 mice resulted in a significant reduction of liver metastases. Transcriptome analysis showed reduction of Paneth cell markers such as lysozymes in KO organoids. Single-cell RNA sequencing analyses of murine metastasized colon cancer cells and patient samples identified the presence of lysozyme positive cells with Paneth cell properties including enhanced glycolysis. Further analyses of transcriptome and chromatin accessibility suggested hepatocyte nuclear factor 4 alpha (HNF4A) as a downstream target of DKK2. Chromatin immunoprecipitation followed by sequencing analysis revealed that HNF4A binds to the promoter region of Sox9, a well-known transcription factor for Paneth cell differentiation. In the liver metastatic foci, DKK2 knockout rescued HNF4A protein levels followed by reduction of lysozyme positive cancer cells. Taken together, DKK2-mediated reduction of HNF4A protein promotes the generation of lysozyme positive cancer cells with Paneth cell properties in the metastasized colon cancers.