Abstract

Tumour spheroids are common in vitro experimental models of avascular tumour growth. Compared with traditional two-dimensional culture, tumour spheroids more closely mimic the avascular tumour microenvironment where spatial differences in nutrient availability strongly influence growth. We show that spheroids initiated using significantly different numbers of cells grow to similar limiting sizes, suggesting that avascular tumours have a limiting structure; in agreement with untested predictions of classical mathematical models of tumour spheroids. We develop a novel mathematical and statistical framework to study the structure of tumour spheroids seeded from cells transduced with fluorescent cell cycle indicators, enabling us to discriminate between arrested and cycling cells and identify an arrested region. Our analysis shows that transient spheroid structure is independent of initial spheroid size, and the limiting structure can be independent of seeding density. Standard experimental protocols compare spheroid size as a function of time; however, our analysis suggests that comparing spheroid structure as a function of overall size produces results that are relatively insensitive to variability in spheroid size. Our experimental observations are made using two melanoma cell lines, but our modelling framework applies across a wide range of spheroid culture conditions and cell lines.

Data availability

Code, data, and interactive figures are available as a Julia module on GitHub (https://github.com/ap-browning/Spheroids). Code used to process the experimental images is available on Zenodo (https://doi.org/10.5281/zenodo.5121093).

The following data sets were generated

Article and author information

Author details

  1. Alexander P Browning

    School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  2. Jesse A Sharp

    School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Ryan J Murphy

    School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Gency Gunasingh

    The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Brodie Lawson

    School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Kevin Burrage

    School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Nikolas K Haass

    4The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3928-5360
  8. Matthew Simpson

    School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
    For correspondence
    matthew.simpson@qut.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6254-313X

Funding

Australian Research Council (DP200100177)

  • Nikolas K Haass
  • Matthew Simpson

ARC Centre of Excellence for Mathematical and Statistical Frontiers (CE140100049)

  • Alexander P Browning
  • Jesse A Sharp

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Browning et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,024
    views
  • 481
    downloads
  • 38
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexander P Browning
  2. Jesse A Sharp
  3. Ryan J Murphy
  4. Gency Gunasingh
  5. Brodie Lawson
  6. Kevin Burrage
  7. Nikolas K Haass
  8. Matthew Simpson
(2021)
Quantitative analysis of tumour spheroid structure
eLife 10:e73020.
https://doi.org/10.7554/eLife.73020

Share this article

https://doi.org/10.7554/eLife.73020

Further reading

    1. Biochemistry and Chemical Biology
    2. Cancer Biology
    Vineeth Vengayil, Shreyas Niphadkar ... Sunil Laxman
    Research Article

    Many cells in high glucose repress mitochondrial respiration, as observed in the Crabtree and Warburg effects. Our understanding of biochemical constraints for mitochondrial activation is limited. Using a Saccharomyces cerevisiae screen, we identified the conserved deubiquitinase Ubp3 (Usp10), as necessary for mitochondrial repression. Ubp3 mutants have increased mitochondrial activity despite abundant glucose, along with decreased glycolytic enzymes, and a rewired glucose metabolic network with increased trehalose production. Utilizing ∆ubp3 cells, along with orthogonal approaches, we establish that the high glycolytic flux in glucose continuously consumes free Pi. This restricts mitochondrial access to inorganic phosphate (Pi), and prevents mitochondrial activation. Contrastingly, rewired glucose metabolism with enhanced trehalose production and reduced GAPDH (as in ∆ubp3 cells) restores Pi. This collectively results in increased mitochondrial Pi and derepression, while restricting mitochondrial Pi transport prevents activation. We therefore suggest that glycolytic flux-dependent intracellular Pi budgeting is a key constraint for mitochondrial repression.

    1. Cancer Biology
    2. Genetics and Genomics
    Joakim W Karlsson, Vasu R Sah ... Jonas A Nilsson
    Research Article

    Uveal melanoma (UM) is a rare melanoma originating in the eye’s uvea, with 50% of patients experiencing metastasis predominantly in the liver. In contrast to cutaneous melanoma, there is only a limited effectiveness of combined immune checkpoint therapies, and half of patients with uveal melanoma metastases succumb to disease within 2 years. This study aimed to provide a path toward enhancing immunotherapy efficacy by identifying and functionally validating tumor-reactive T cells in liver metastases of patients with UM. We employed single-cell RNA-seq of biopsies and tumor-infiltrating lymphocytes (TILs) to identify potential tumor-reactive T cells. Patient-derived xenograft (PDX) models of UM metastases were created from patients, and tumor sphere cultures were generated from these models for co-culture with autologous or MART1-specific HLA-matched allogenic TILs. Activated T cells were subjected to TCR-seq, and the TCRs were matched to those found in single-cell sequencing data from biopsies, expanded TILs, and in livers or spleens of PDX models injected with TILs. Our findings revealed that tumor-reactive T cells resided not only among activated and exhausted subsets of T cells, but also in a subset of cytotoxic effector cells. In conclusion, combining single-cell sequencing and functional analysis provides valuable insights into which T cells in UM may be useful for cell therapy amplification and marker selection.