Abstract

Tumour spheroids are common in vitro experimental models of avascular tumour growth. Compared with traditional two-dimensional culture, tumour spheroids more closely mimic the avascular tumour microenvironment where spatial differences in nutrient availability strongly influence growth. We show that spheroids initiated using significantly different numbers of cells grow to similar limiting sizes, suggesting that avascular tumours have a limiting structure; in agreement with untested predictions of classical mathematical models of tumour spheroids. We develop a novel mathematical and statistical framework to study the structure of tumour spheroids seeded from cells transduced with fluorescent cell cycle indicators, enabling us to discriminate between arrested and cycling cells and identify an arrested region. Our analysis shows that transient spheroid structure is independent of initial spheroid size, and the limiting structure can be independent of seeding density. Standard experimental protocols compare spheroid size as a function of time; however, our analysis suggests that comparing spheroid structure as a function of overall size produces results that are relatively insensitive to variability in spheroid size. Our experimental observations are made using two melanoma cell lines, but our modelling framework applies across a wide range of spheroid culture conditions and cell lines.

Data availability

Code, data, and interactive figures are available as a Julia module on GitHub (https://github.com/ap-browning/Spheroids). Code used to process the experimental images is available on Zenodo (https://doi.org/10.5281/zenodo.5121093).

The following data sets were generated

Article and author information

Author details

  1. Alexander P Browning

    School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  2. Jesse A Sharp

    School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Ryan J Murphy

    School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Gency Gunasingh

    The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Brodie Lawson

    School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Kevin Burrage

    School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Nikolas K Haass

    4The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3928-5360
  8. Matthew Simpson

    School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia
    For correspondence
    matthew.simpson@qut.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6254-313X

Funding

Australian Research Council (DP200100177)

  • Nikolas K Haass
  • Matthew Simpson

ARC Centre of Excellence for Mathematical and Statistical Frontiers (CE140100049)

  • Alexander P Browning
  • Jesse A Sharp

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Browning et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,947
    views
  • 470
    downloads
  • 38
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexander P Browning
  2. Jesse A Sharp
  3. Ryan J Murphy
  4. Gency Gunasingh
  5. Brodie Lawson
  6. Kevin Burrage
  7. Nikolas K Haass
  8. Matthew Simpson
(2021)
Quantitative analysis of tumour spheroid structure
eLife 10:e73020.
https://doi.org/10.7554/eLife.73020

Share this article

https://doi.org/10.7554/eLife.73020

Further reading

    1. Cancer Biology
    Yumin Fu, Xinyu Guo ... Lianxin Liu
    Review Article

    Hepatocellular carcinoma (HCC), the most common type of liver tumor, is a leading cause of cancer-related deaths, and the incidence of liver cancer is still increasing worldwide. Curative hepatectomy or liver transplantation is only indicated for a small population of patients with early-stage HCC. However, most patients with HCC are not candidates for radical resection due to disease progression, leading to the choice of the conventional tyrosine kinase inhibitor drug sorafenib as first-line treatment. In the past few years, immunotherapy, mainly immune checkpoint inhibitors (ICIs), has revolutionized the clinical strategy for HCC. Combination therapy with ICIs has proven more effective than sorafenib, and clinical trials have been conducted to apply these therapies to patients. Despite significant progress in immunotherapy, the molecular mechanisms behind it remain unclear, and immune resistance is often challenging to overcome. Several studies have pointed out that the complex intercellular communication network in the immune microenvironment of HCC regulates tumor escape and drug resistance to immune response. This underscores the urgent need to analyze the immune microenvironment of HCC. This review describes the immunosuppressive cell populations in the immune microenvironment of HCC, as well as the related clinical trials, aiming to provide insights for the next generation of precision immunotherapy.

    1. Cancer Biology
    Yang Liu, Yi Jiang ... Xi Gu
    Research Article

    Distant metastasis is the major cause of death in patients with breast cancer. Epithelial–mesenchymal transition (EMT) contributes to breast cancer metastasis. Regulator of G protein-signaling (RGS) proteins modulates metastasis in various cancers. This study identified a novel role for RGS10 in EMT and metastasis in breast cancer. RGS10 protein levels were significantly lower in breast cancer tissues compared to normal breast tissues, and deficiency in RGS10 protein predicted a worse prognosis in patients with breast cancer. RGS10 protein levels were lower in the highly aggressive cell line MDA-MB-231 than in the poorly aggressive, less invasive cell lines MCF7 and SKBR3. Silencing RGS10 in SKBR3 cells enhanced EMT and caused SKBR3 cell migration and invasion. The ability of RGS10 to suppress EMT and metastasis in breast cancer was dependent on lipocalin-2 and MIR539-5p. These findings identify RGS10 as a tumor suppressor, prognostic biomarker, and potential therapeutic target for breast cancer.