TREM2 regulates purinergic receptor-mediated calcium signaling and motility in human iPSC-derived microglia

  1. Amit Jairaman
  2. Amanda McQuade
  3. Alberto Granzotto
  4. You Jung Kang
  5. Jean Paul Chadarevian
  6. Sunil Gandhi
  7. Ian Parker
  8. Ian Smith
  9. Hansang Cho
  10. Stefano L Sensi
  11. Shivashankar Othy
  12. Mathew Blurton-Jones  Is a corresponding author
  13. Michael D Cahalan  Is a corresponding author
  1. University of California, United States
  2. University of California, Irvine, United States
  3. University of North Carolina, United States
  4. University G d'Annunzio of Chieti-Pescara, Italy

Abstract

The membrane protein TREM2 (Triggering Receptor Expressed on Myeloid cells 2) regulates key microglial functions including phagocytosis and chemotaxis. Loss-of-function variants of TREM2 are associated with increased risk of Alzheimer's disease (AD). Because abnormalities in Ca2+ signaling have been observed in several AD models, we investigated TREM2 regulation of Ca2+ signaling in human induced pluripotent stem cell-derived microglia (iPSC-microglia) with genetic deletion of TREM2. We found that iPSC-microglia lacking TREM2 (TREM2 KO) show exaggerated Ca2+ signals in response to purinergic agonists, such as ADP, that shape microglial injury responses. This ADP hypersensitivity, driven by increased expression of P2Y12 and P2Y13 receptors, results in greater release of Ca2+ from the endoplasmic reticulum (ER) stores, which triggers sustained Ca2+ influx through Orai channels and alters cell motility in TREM2 KO microglia. Using iPSC-microglia expressing the genetically encoded Ca2+ probe, Salsa6f, we found that cytosolic Ca2+ tunes motility to a greater extent in TREM2 KO microglia. Despite showing greater overall displacement, TREM2 KO microglia exhibit reduced directional chemotaxis along ADP gradients. Accordingly, the chemotactic defect in TREM2 KO microglia was rescued by reducing cytosolic Ca2+ using a P2Y12 receptor antagonist. Our results show that loss of TREM2 confers a defect in microglial Ca2+ response to purinergic signals, suggesting a window of Ca2+ signaling for optimal microglial motility.

Data availability

RNA sequencing data referenced in Figure 1- figure supplement 2 is available through Gene Expression Omnibus: GSE157652.

The following data sets were generated

Article and author information

Author details

  1. Amit Jairaman

    Department of Physiology and Biophysics, University of California, Irvine, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5206-700X
  2. Amanda McQuade

    Department of Neurobiology and Behavior, University of California, Irvine, Irvine, United States
    Competing interests
    No competing interests declared.
  3. Alberto Granzotto

    Department of Neurobiology and Behavior, University of California, Irvine, Irvine, United States
    Competing interests
    No competing interests declared.
  4. You Jung Kang

    Department of Mechanical Engineering and Engineering Science, University of North Carolina, Charlotte, United States
    Competing interests
    No competing interests declared.
  5. Jean Paul Chadarevian

    Department of Neurobiology and Behavior, University of California, Irvine, Irvine, United States
    Competing interests
    No competing interests declared.
  6. Sunil Gandhi

    Department of Neurobiology and Behavior, University of California, Irvine, Irvine, United States
    Competing interests
    Sunil Gandhi, is a co-founders of NovoGlia Inc..
  7. Ian Parker

    Department of Physiology and Biophysics, University of California, Irvine, Irvine, United States
    Competing interests
    No competing interests declared.
  8. Ian Smith

    Department of Neurobiology and Behavior, University of California, Irvine, Irvine, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9910-195X
  9. Hansang Cho

    Department of Mechanical Engineering and Engineering Science, University of North Carolina, Charlotte, United States
    Competing interests
    No competing interests declared.
  10. Stefano L Sensi

    Department of Neuroscience, Imaging and Clinical Sciences, University G d'Annunzio of Chieti-Pescara, Chieti, Italy
    Competing interests
    No competing interests declared.
  11. Shivashankar Othy

    Department of Physiology and Biophysics, University of California, Irvine, Irvine, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6832-5547
  12. Mathew Blurton-Jones

    Department of Neurobiology and Behavior, University of California, Irvine, Irvine, United States
    For correspondence
    mblurton@uci.edu
    Competing interests
    Mathew Blurton-Jones, is a co-inventor of patent application WO/2018/160496, related to the differentiation of pluripotent stem cells into microglia. Is a co-founders of NovoGlia Inc..
  13. Michael D Cahalan

    Department of Physiology and Biophysics, University of California, Irvine, Irvine, United States
    For correspondence
    mcahalan@uci.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4987-2526

Funding

National Institutes of Health (R01 NS14609)

  • Michael D Cahalan

National Institutes of Health (R01 AI121945)

  • Michael D Cahalan

National Institutes of Health (R01 AG048099)

  • Mathew Blurton-Jones

National Institutes of Health (R01 AG056303)

  • Mathew Blurton-Jones

National Institutes of Health (R01 AG055524)

  • Mathew Blurton-Jones

National Institutes of Health (core AG066519)

  • Mathew Blurton-Jones

National Institutes of Health (U01 AI160397)

  • Shivashankar Othy

National Institutes of Health (T32 NS082174)

  • Amanda McQuade

National Institutes of Health (RF1DA048813)

  • Sunil Gandhi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Murali Prakriya, Northwestern University, United States

Ethics

Human subjects: Human iPSC lines were generated by the University of California Alzheimer's Disease Research Center (UCI ADRC) stem cell core. Subject fibroblasts were collected under approved Institutional Review Boards (IRB) and human Stem Cell Research Oversight (hSCRO) committee protocols. Informed consent was received for all participants.

Version history

  1. Received: August 13, 2021
  2. Preprint posted: August 24, 2021 (view preprint)
  3. Accepted: February 18, 2022
  4. Accepted Manuscript published: February 22, 2022 (version 1)
  5. Version of Record published: March 9, 2022 (version 2)
  6. Version of Record updated: March 22, 2022 (version 3)

Copyright

© 2022, Jairaman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,307
    views
  • 822
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Amit Jairaman
  2. Amanda McQuade
  3. Alberto Granzotto
  4. You Jung Kang
  5. Jean Paul Chadarevian
  6. Sunil Gandhi
  7. Ian Parker
  8. Ian Smith
  9. Hansang Cho
  10. Stefano L Sensi
  11. Shivashankar Othy
  12. Mathew Blurton-Jones
  13. Michael D Cahalan
(2022)
TREM2 regulates purinergic receptor-mediated calcium signaling and motility in human iPSC-derived microglia
eLife 11:e73021.
https://doi.org/10.7554/eLife.73021

Share this article

https://doi.org/10.7554/eLife.73021

Further reading

    1. Evolutionary Biology
    2. Immunology and Inflammation
    Mark S Lee, Peter J Tuohy ... Michael S Kuhns
    Research Advance

    CD4+ T cell activation is driven by five-module receptor complexes. The T cell receptor (TCR) is the receptor module that binds composite surfaces of peptide antigens embedded within MHCII molecules (pMHCII). It associates with three signaling modules (CD3γε, CD3δε, and CD3ζζ) to form TCR-CD3 complexes. CD4 is the coreceptor module. It reciprocally associates with TCR-CD3-pMHCII assemblies on the outside of a CD4+ T cells and with the Src kinase, LCK, on the inside. Previously, we reported that the CD4 transmembrane GGXXG and cytoplasmic juxtamembrane (C/F)CV+C motifs found in eutherian (placental mammal) CD4 have constituent residues that evolved under purifying selection (Lee et al., 2022). Expressing mutants of these motifs together in T cell hybridomas increased CD4-LCK association but reduced CD3ζ, ZAP70, and PLCγ1 phosphorylation levels, as well as IL-2 production, in response to agonist pMHCII. Because these mutants preferentially localized CD4-LCK pairs to non-raft membrane fractions, one explanation for our results was that they impaired proximal signaling by sequestering LCK away from TCR-CD3. An alternative hypothesis is that the mutations directly impacted signaling because the motifs normally play an LCK-independent role in signaling. The goal of this study was to discriminate between these possibilities. Using T cell hybridomas, our results indicate that: intracellular CD4-LCK interactions are not necessary for pMHCII-specific signal initiation; the GGXXG and (C/F)CV+C motifs are key determinants of CD4-mediated pMHCII-specific signal amplification; the GGXXG and (C/F)CV+C motifs exert their functions independently of direct CD4-LCK association. These data provide a mechanistic explanation for why residues within these motifs are under purifying selection in jawed vertebrates. The results are also important to consider for biomimetic engineering of synthetic receptors.

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Jean-David Larouche, Céline M Laumont ... Claude Perreault
    Research Article

    Transposable elements (TEs) are repetitive sequences representing ~45% of the human and mouse genomes and are highly expressed by medullary thymic epithelial cells (mTECs). In this study, we investigated the role of TEs on T-cell development in the thymus. We performed multiomic analyses of TEs in human and mouse thymic cells to elucidate their role in T-cell development. We report that TE expression in the human thymus is high and shows extensive age- and cell lineage-related variations. TE expression correlates with multiple transcription factors in all cell types of the human thymus. Two cell types express particularly broad TE repertoires: mTECs and plasmacytoid dendritic cells (pDCs). In mTECs, transcriptomic data suggest that TEs interact with transcription factors essential for mTEC development and function (e.g., PAX1 and REL), and immunopeptidomic data showed that TEs generate MHC-I-associated peptides implicated in thymocyte education. Notably, AIRE, FEZF2, and CHD4 regulate small yet non-redundant sets of TEs in murine mTECs. Human thymic pDCs homogenously express large numbers of TEs that likely form dsRNA, which can activate innate immune receptors, potentially explaining why thymic pDCs constitutively secrete IFN ɑ/β. This study highlights the diversity of interactions between TEs and the adaptive immune system. TEs are genetic parasites, and the two thymic cell types most affected by TEs (mTEcs and pDCs) are essential to establishing central T-cell tolerance. Therefore, we propose that orchestrating TE expression in thymic cells is critical to prevent autoimmunity in vertebrates.