Computational modeling and quantitative physiology reveal central parameters for brassinosteroid-regulated early cell physiological processes linked to 5elongation growth of the Arabidopsis root

Abstract

Brassinosteroids (BR) are key hormonal regulators of plant development. However, whereas the individual components of BR perception and signaling are well characterized experimentally, the question of how they can act and whether they are sufficient to carry out the critical function of cellular elongation remains open. Here, we combined computational modeling with quantitative cell physiology to understand the dynamics of the plasma membrane (PM)-localized BR response pathway during the initiation of cellular responses in the epidermis of the Arabidopsis root tip that are be linked to cell elongation. The model, consisting of ordinary differential equations, comprises the BR induced hyperpolarization of the PM, the acidification of the apoplast and subsequent cell wall swelling. We demonstrate that the competence of the root epidermal cells for the BR response predominantly depends on the amount and activity of H+-ATPases in the PM. The model further predicts that an influx of cations is required to compensate for the shift of positive charges caused by the apoplastic acidification. A potassium channel was subsequently identified and experimentally characterized, fulfilling this function. Thus, we established the landscape of components and parameters for physiological processes potentially linked to cell elongation, a central process in plant development.

Data availability

All data generated and analysed during this study are included in the manuscript and the supporting file (Appendix 1). Raw and metadata are provided for Figures 4, 5, 6, 7 and 8 as well as for Appendix 1 Figures 2, 3, 4 and 6. Figure 1 represents scheme of early BRI1 signaling and Figure 2 the scheme of the used model structure. Predominantly published scRNA-Seq data were used for Figure 3. Modelling codes are available in supporting file (Appendix 1 - model information).

The following previously published data sets were used

Article and author information

Author details

  1. Ruth Großeholz

    BioQuant, Heidelberg University, Heidelberg, Germany
    For correspondence
    ruth.grosseholz@bioquant.uni-heidelberg.de
    Competing interests
    The authors declare that no competing interests exist.
  2. Friederike Wanke

    Center for Molecular Biology of Plants, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Leander Rohr

    Center for Molecular Biology of Plants, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4592-4197
  4. Nina Glöckner

    Center for Molecular Biology of Plants, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Luiselotte Rausch

    Center for Molecular Biology of Plants, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Stefan Scholl

    Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Emanuele Scacchi

    Center for Molecular Biology of Plants, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Amelie-Jette Spazierer

    Center for Molecular Biology of Plants, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Lana Shabala

    Tasmanian Institute for Agriculture, University of Tasmania, Hobard, Australia
    Competing interests
    The authors declare that no competing interests exist.
  10. Sergey Shabala

    Tasmanian Institute for Agriculture, University of Tasmania, Hobart, Australia
    Competing interests
    The authors declare that no competing interests exist.
  11. Karin Schumacher

    Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6484-8105
  12. Ursula Kummer

    Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Klaus Harter

    Center for Molecular Biology of Plants, University of Tübingen, Tübingen, Germany
    For correspondence
    klaus.harter@zmbp.uni-tuebingen.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2150-6970

Funding

Deutsche Forschungsgemeinschaft (CRC 1101)

  • Karin Schumacher
  • Ursula Kummer
  • Klaus Harter

Deutsche Forschungsgemeinschaft ((INST 37/819- 594 1 FUGG,INST 37/965-1 FUGG,INST 37/991-1 FUGG,INST 37/992-1 FUGG)

  • Klaus Harter

Schmeil Stiftung (RG)

  • Ruth Großeholz

Joachim Herz Stiftung (RG)

  • Ruth Großeholz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Großeholz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,375
    views
  • 336
    downloads
  • 17
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ruth Großeholz
  2. Friederike Wanke
  3. Leander Rohr
  4. Nina Glöckner
  5. Luiselotte Rausch
  6. Stefan Scholl
  7. Emanuele Scacchi
  8. Amelie-Jette Spazierer
  9. Lana Shabala
  10. Sergey Shabala
  11. Karin Schumacher
  12. Ursula Kummer
  13. Klaus Harter
(2022)
Computational modeling and quantitative physiology reveal central parameters for brassinosteroid-regulated early cell physiological processes linked to 5elongation growth of the Arabidopsis root
eLife 11:e73031.
https://doi.org/10.7554/eLife.73031

Share this article

https://doi.org/10.7554/eLife.73031

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Fangluo Chen, Dylan C Sarver ... G William Wong
    Research Article

    Obesity is a major risk factor for type 2 diabetes, dyslipidemia, cardiovascular disease, and hypertension. Intriguingly, there is a subset of metabolically healthy obese (MHO) individuals who are seemingly able to maintain a healthy metabolic profile free of metabolic syndrome. The molecular underpinnings of MHO, however, are not well understood. Here, we report that CTRP10/C1QL2-deficient mice represent a unique female model of MHO. CTRP10 modulates weight gain in a striking and sexually dimorphic manner. Female, but not male, mice lacking CTRP10 develop obesity with age on a low-fat diet while maintaining an otherwise healthy metabolic profile. When fed an obesogenic diet, female Ctrp10 knockout (KO) mice show rapid weight gain. Despite pronounced obesity, Ctrp10 KO female mice do not develop steatosis, dyslipidemia, glucose intolerance, insulin resistance, oxidative stress, or low-grade inflammation. Obesity is largely uncoupled from metabolic dysregulation in female KO mice. Multi-tissue transcriptomic analyses highlighted gene expression changes and pathways associated with insulin-sensitive obesity. Transcriptional correlation of the differentially expressed gene (DEG) orthologs in humans also shows sex differences in gene connectivity within and across metabolic tissues, underscoring the conserved sex-dependent function of CTRP10. Collectively, our findings suggest that CTRP10 negatively regulates body weight in females, and that loss of CTRP10 results in benign obesity with largely preserved insulin sensitivity and metabolic health. This female MHO mouse model is valuable for understanding sex-biased mechanisms that uncouple obesity from metabolic dysfunction.

    1. Computational and Systems Biology
    Huiyong Cheng, Dawson Miller ... Qiuying Chen
    Research Article

    Mass spectrometry imaging (MSI) is a powerful technology used to define the spatial distribution and relative abundance of metabolites across tissue cryosections. While software packages exist for pixel-by-pixel individual metabolite and limited target pairs of ratio imaging, the research community lacks an easy computing and application tool that images any metabolite abundance ratio pairs. Importantly, recognition of correlated metabolite pairs may contribute to the discovery of unanticipated molecules in shared metabolic pathways. Here, we describe the development and implementation of an untargeted R package workflow for pixel-by-pixel ratio imaging of all metabolites detected in an MSI experiment. Considering untargeted MSI studies of murine brain and embryogenesis, we demonstrate that ratio imaging minimizes systematic data variation introduced by sample handling, markedly enhances spatial image contrast, and reveals previously unrecognized metabotype-distinct tissue regions. Furthermore, ratio imaging facilitates identification of novel regional biomarkers and provides anatomical information regarding spatial distribution of metabolite-linked biochemical pathways. The algorithm described herein is applicable to any MSI dataset containing spatial information for metabolites, peptides or proteins, offering a potent hypothesis generation tool to enhance knowledge obtained from current spatial metabolite profiling technologies.