Computational modeling and quantitative physiology reveal central parameters for brassinosteroid-regulated early cell physiological processes linked to 5elongation growth of the Arabidopsis root

Abstract

Brassinosteroids (BR) are key hormonal regulators of plant development. However, whereas the individual components of BR perception and signaling are well characterized experimentally, the question of how they can act and whether they are sufficient to carry out the critical function of cellular elongation remains open. Here, we combined computational modeling with quantitative cell physiology to understand the dynamics of the plasma membrane (PM)-localized BR response pathway during the initiation of cellular responses in the epidermis of the Arabidopsis root tip that are be linked to cell elongation. The model, consisting of ordinary differential equations, comprises the BR induced hyperpolarization of the PM, the acidification of the apoplast and subsequent cell wall swelling. We demonstrate that the competence of the root epidermal cells for the BR response predominantly depends on the amount and activity of H+-ATPases in the PM. The model further predicts that an influx of cations is required to compensate for the shift of positive charges caused by the apoplastic acidification. A potassium channel was subsequently identified and experimentally characterized, fulfilling this function. Thus, we established the landscape of components and parameters for physiological processes potentially linked to cell elongation, a central process in plant development.

Data availability

All data generated and analysed during this study are included in the manuscript and the supporting file (Appendix 1). Raw and metadata are provided for Figures 4, 5, 6, 7 and 8 as well as for Appendix 1 Figures 2, 3, 4 and 6. Figure 1 represents scheme of early BRI1 signaling and Figure 2 the scheme of the used model structure. Predominantly published scRNA-Seq data were used for Figure 3. Modelling codes are available in supporting file (Appendix 1 - model information).

The following previously published data sets were used

Article and author information

Author details

  1. Ruth Großeholz

    BioQuant, Heidelberg University, Heidelberg, Germany
    For correspondence
    ruth.grosseholz@bioquant.uni-heidelberg.de
    Competing interests
    The authors declare that no competing interests exist.
  2. Friederike Wanke

    Center for Molecular Biology of Plants, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Leander Rohr

    Center for Molecular Biology of Plants, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4592-4197
  4. Nina Glöckner

    Center for Molecular Biology of Plants, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Luiselotte Rausch

    Center for Molecular Biology of Plants, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Stefan Scholl

    Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Emanuele Scacchi

    Center for Molecular Biology of Plants, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Amelie-Jette Spazierer

    Center for Molecular Biology of Plants, University of Tübingen, Tübingen, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Lana Shabala

    Tasmanian Institute for Agriculture, University of Tasmania, Hobard, Australia
    Competing interests
    The authors declare that no competing interests exist.
  10. Sergey Shabala

    Tasmanian Institute for Agriculture, University of Tasmania, Hobart, Australia
    Competing interests
    The authors declare that no competing interests exist.
  11. Karin Schumacher

    Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6484-8105
  12. Ursula Kummer

    Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Klaus Harter

    Center for Molecular Biology of Plants, University of Tübingen, Tübingen, Germany
    For correspondence
    klaus.harter@zmbp.uni-tuebingen.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2150-6970

Funding

Deutsche Forschungsgemeinschaft (CRC 1101)

  • Karin Schumacher
  • Ursula Kummer
  • Klaus Harter

Deutsche Forschungsgemeinschaft ((INST 37/819- 594 1 FUGG,INST 37/965-1 FUGG,INST 37/991-1 FUGG,INST 37/992-1 FUGG)

  • Klaus Harter

Schmeil Stiftung (RG)

  • Ruth Großeholz

Joachim Herz Stiftung (RG)

  • Ruth Großeholz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Krzysztof Wabnik, CBGP Centro de Biotecnologia y Genomica de Plantas UPM-INIA, Spain

Version history

  1. Preprint posted: April 14, 2021 (view preprint)
  2. Received: August 13, 2021
  3. Accepted: September 3, 2022
  4. Accepted Manuscript published: September 7, 2022 (version 1)
  5. Accepted Manuscript updated: September 13, 2022 (version 2)
  6. Version of Record published: September 30, 2022 (version 3)

Copyright

© 2022, Großeholz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,244
    views
  • 317
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ruth Großeholz
  2. Friederike Wanke
  3. Leander Rohr
  4. Nina Glöckner
  5. Luiselotte Rausch
  6. Stefan Scholl
  7. Emanuele Scacchi
  8. Amelie-Jette Spazierer
  9. Lana Shabala
  10. Sergey Shabala
  11. Karin Schumacher
  12. Ursula Kummer
  13. Klaus Harter
(2022)
Computational modeling and quantitative physiology reveal central parameters for brassinosteroid-regulated early cell physiological processes linked to 5elongation growth of the Arabidopsis root
eLife 11:e73031.
https://doi.org/10.7554/eLife.73031

Share this article

https://doi.org/10.7554/eLife.73031

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    N Suhas Jagannathan, Javier Yu Peng Koh ... Lisa Tucker-Kellogg
    Research Article

    Bats have unique characteristics compared to other mammals, including increased longevity and higher resistance to cancer and infectious disease. While previous studies have analyzed the metabolic requirements for flight, it is still unclear how bat metabolism supports these unique features, and no study has integrated metabolomics, transcriptomics, and proteomics to characterize bat metabolism. In this work, we performed a multi-omics data analysis using a computational model of metabolic fluxes to identify fundamental differences in central metabolism between primary lung fibroblast cell lines from the black flying fox fruit bat (Pteropus alecto) and human. Bat cells showed higher expression levels of Complex I components of electron transport chain (ETC), but, remarkably, a lower rate of oxygen consumption. Computational modeling interpreted these results as indicating that Complex II activity may be low or reversed, similar to an ischemic state. An ischemic-like state of bats was also supported by decreased levels of central metabolites and increased ratios of succinate to fumarate in bat cells. Ischemic states tend to produce reactive oxygen species (ROS), which would be incompatible with the longevity of bats. However, bat cells had higher antioxidant reservoirs (higher total glutathione and higher ratio of NADPH to NADP) despite higher mitochondrial ROS levels. In addition, bat cells were more resistant to glucose deprivation and had increased resistance to ferroptosis, one of the characteristics of which is oxidative stress. Thus, our studies revealed distinct differences in the ETC regulation and metabolic stress responses between human and bat cells.

    1. Computational and Systems Biology
    2. Neuroscience
    Sara Ibañez, Nilapratim Sengupta ... Christina M Weaver
    Research Article

    Normal aging leads to myelin alterations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are positively correlated with degree of cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First, we built a multicompartment pyramidal neuron model fit to monkey dlPFC empirical data, with an axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions. This model was used to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination. Next, we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from ultrastructure up to behavior during normal aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.