Computational modeling and quantitative physiology reveal central parameters for brassinosteroid-regulated early cell physiological processes linked to elongation growth of the Arabidopsis root

  1. Ruth Großeholz  Is a corresponding author
  2. Friederike Wanke
  3. Leander Rohr
  4. Nina Glöckner
  5. Luiselotte Rausch
  6. Stefan Scholl
  7. Emanuele Scacchi
  8. Amelie-Jette Spazierer
  9. Lana Shabala
  10. Sergey Shabala
  11. Karin Schumacher
  12. Ursula Kummer
  13. Klaus Harter  Is a corresponding author
  1. Heidelberg University, Germany
  2. University of Tübingen, Germany
  3. University of Tasmania, Australia
1 additional file

Additional files

All additional files

Any figure supplements, source code, source data, videos or supplementary files associated with this article are contained within this zip.

https://cdn.elifesciences.org/articles/73031/elife-73031-supp-v2.zip

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ruth Großeholz
  2. Friederike Wanke
  3. Leander Rohr
  4. Nina Glöckner
  5. Luiselotte Rausch
  6. Stefan Scholl
  7. Emanuele Scacchi
  8. Amelie-Jette Spazierer
  9. Lana Shabala
  10. Sergey Shabala
  11. Karin Schumacher
  12. Ursula Kummer
  13. Klaus Harter
(2022)
Computational modeling and quantitative physiology reveal central parameters for brassinosteroid-regulated early cell physiological processes linked to elongation growth of the Arabidopsis root
eLife 11:e73031.
https://doi.org/10.7554/eLife.73031