Allosteric cooperation in ß-lactam binding to a non-classical transpeptidase

  1. Nazia Ahmad
  2. Sanmati Dugad
  3. Varsha Chauhan
  4. Shubbir Ahmed
  5. Kunal Sharma
  6. Sangita Kachhap
  7. Rana Zaidi
  8. William R Bishai
  9. Gyanu Lamichanne  Is a corresponding author
  10. Pankaj Kumar  Is a corresponding author
  1. Jamia Hamdard University, India
  2. Johns Hopkins University, United States
  3. Translational Health Science and Technology Institute, India
  4. Polish Academy of Sciences, Poland

Abstract

L,D-transpeptidase function predominates in atypical 3®3 transpeptide networking of peptidoglycan (PG) layer in Mycobacterium tuberculosis. Prior studies of L,D-transpeptidases have identified only the catalytic site that binds to peptide moiety of the PG substrate or ß-lactam antibiotics. This insight was leveraged to develop mechanism of its activity and inhibition by ß-lactams. Here we report identification of an allosteric site at a distance of 21 Å from the catalytic site that binds the sugar moiety of PG substrates (hereafter referred to as the S-pocket). This site also binds a second ß-lactam molecule and influences binding at the catalytic site. We provide evidence that two ß-lactam molecules bind co-operatively to this enzyme, one non-covalently at the S-pocket and one covalently at the catalytic site. This dual ß-lactam binding phenomenon is previously unknown and is an observation that may offer novel approaches for the structure-based design of new drugs against M. tuberculosis./em>.

Data availability

Diffraction data have been deposited in PDB under the accession code 7F71, 7F8P

The following data sets were generated

Article and author information

Author details

  1. Nazia Ahmad

    1Department of Biochemistry, Jamia Hamdard University, Delhi, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Sanmati Dugad

    Department of Infectious Diseases, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Varsha Chauhan

    Department of Infectious Diseases, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Shubbir Ahmed

    NCR Biotech Science Cluster, Translational Health Science and Technology Institute, Faridabad, India
    Competing interests
    The authors declare that no competing interests exist.
  5. Kunal Sharma

    1Department of Biochemistry, Jamia Hamdard University, Delhi, India
    Competing interests
    The authors declare that no competing interests exist.
  6. Sangita Kachhap

    Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek, Poland
    Competing interests
    The authors declare that no competing interests exist.
  7. Rana Zaidi

    1Department of Biochemistry, Jamia Hamdard University, Delhi, India
    Competing interests
    The authors declare that no competing interests exist.
  8. William R Bishai

    Department of Infectious Diseases, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8734-4118
  9. Gyanu Lamichanne

    Department of Infectious Diseases, Johns Hopkins University, Baltimore, United States
    For correspondence
    gyanu@jhu.edu
    Competing interests
    The authors declare that no competing interests exist.
  10. Pankaj Kumar

    Medicine, Johns Hopkins University, Baltimore, United States
    For correspondence
    pkumar10@jhmi.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9163-3273

Funding

Science and Engineering Research Board (CRG/2019/005079)

  • Pankaj Kumar

National Institutes of Health (R33 AI111739)

  • Gyanu Lamichanne

National Institutes of Health (R21 AI137720)

  • Gyanu Lamichanne

Department of Biotechnology, Ministry of Science and Technology, India (BT-RLF/Re-entry/68/2017)

  • Pankaj Kumar

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Laura Dassama, Stanford University, United States

Version history

  1. Received: August 14, 2021
  2. Preprint posted: September 6, 2021 (view preprint)
  3. Accepted: April 26, 2022
  4. Accepted Manuscript published: April 27, 2022 (version 1)
  5. Accepted Manuscript updated: April 29, 2022 (version 2)
  6. Version of Record published: May 11, 2022 (version 3)

Copyright

© 2022, Ahmad et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,400
    Page views
  • 294
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nazia Ahmad
  2. Sanmati Dugad
  3. Varsha Chauhan
  4. Shubbir Ahmed
  5. Kunal Sharma
  6. Sangita Kachhap
  7. Rana Zaidi
  8. William R Bishai
  9. Gyanu Lamichanne
  10. Pankaj Kumar
(2022)
Allosteric cooperation in ß-lactam binding to a non-classical transpeptidase
eLife 11:e73055.
https://doi.org/10.7554/eLife.73055

Share this article

https://doi.org/10.7554/eLife.73055

Further reading

    1. Biochemistry and Chemical Biology
    2. Plant Biology
    Pradeep Kumar, Ankit Roy ... Rajan Sankaranarayanan
    Research Article

    Aldehydes, being an integral part of carbon metabolism, energy generation, and signalling pathways, are ingrained in plant physiology. Land plants have developed intricate metabolic pathways which involve production of reactive aldehydes and its detoxification to survive harsh terrestrial environments. Here, we show that physiologically produced aldehydes, i.e., formaldehyde and methylglyoxal in addition to acetaldehyde, generate adducts with aminoacyl-tRNAs, a substrate for protein synthesis. Plants are unique in possessing two distinct chiral proofreading systems, D-aminoacyl-tRNA deacylase1 (DTD1) and DTD2, of bacterial and archaeal origins, respectively. Extensive biochemical analysis revealed that only archaeal DTD2 can remove the stable D-aminoacyl adducts on tRNA thereby shielding archaea and plants from these system-generated aldehydes. Using Arabidopsis as a model system, we have shown that the loss of DTD2 gene renders plants susceptible to these toxic aldehydes as they generate stable alkyl modification on D-aminoacyl-tRNAs, which are recycled only by DTD2. Bioinformatic analysis identifies the expansion of aldehyde metabolising repertoire in land plant ancestors which strongly correlates with the recruitment of archaeal DTD2. Finally, we demonstrate that the overexpression of DTD2 offers better protection against aldehydes than in wild type Arabidopsis highlighting its role as a multi-aldehyde detoxifier that can be explored as a transgenic crop development strategy.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Greg J Dodge, Alyssa J Anderson ... Barbara Imperiali
    Research Article

    Bacterial cell surface glycoconjugates are critical for cell survival and for interactions between bacteria and their hosts. Consequently, the pathways responsible for their biosynthesis have untapped potential as therapeutic targets. The localization of many glycoconjugate biosynthesis enzymes to the membrane represents a significant challenge for expressing, purifying, and characterizing these enzymes. Here, we leverage cutting-edge detergent-free methods to stabilize, purify, and structurally characterize WbaP, a phosphoglycosyl transferase (PGT) from the Salmonella enterica (LT2) O-antigen biosynthesis. From a functional perspective, these studies establish WbaP as a homodimer, reveal the structural elements responsible for dimerization, shed light on the regulatory role of a domain of unknown function embedded within WbaP, and identify conserved structural motifs between PGTs and functionally unrelated UDP-sugar dehydratases. From a technological perspective, the strategy developed here is generalizable and provides a toolkit for studying other classes of small membrane proteins embedded in liponanoparticles beyond PGTs.