Structural dynamics determine voltage and pH gating in human voltage-gated proton channel

  1. Shuo Han
  2. Sophia Peng
  3. Joshua Vance
  4. Kimberly Tran
  5. Nhu Do
  6. Nauy Bui
  7. Zhenhua Gui
  8. Shizhen Wang  Is a corresponding author
  1. University of Missouri-Kansas City, United States

Abstract

Voltage-gated ion channels are key players of electrical signaling in cells. As a unique subfamily, voltage-gated proton (Hv) channels are standalone voltage sensors without separate ion conductive pores. Hv channels are gated by both voltage and transmembrane proton gradient (i.e ∆pH), serving as acid extruders in most cells. Amongst their many functions, Hv channels are known for regulating the intracellular pH of human spermatozoa and compensating for the charge and pH imbalances caused by NADPH oxidases in phagocytes. Like the canonical voltage sensors, Hv channels are a bundle of 4 helices (named S1 through S4), with the S4 segment carrying 3 positively charged Arg residues. Extensive structural and electrophysiological studies on voltage-gated ion channels, in general, agree on an outwards movement of the S4 segment upon activating voltage, but the real-time conformational transitions are still unattainable. With purified human voltage-gated proton (hHv1) channels reconstituted in liposomes, we have examined its conformational dynamics, including the S4 segment at different voltage and pHs using single-molecule fluorescence resonance energy transfer (smFRET). Here, we provide the first glimpse of real-time conformational trajectories of the hHv1 voltage sensor and show that both voltage and pH gradient shift the conformational dynamics of the S4 segment to control channel gating. Our results indicate that the S4 segment transits among 3 major conformational states and kinetic analysis suggest that only the transitions between the inward and outward conformations are highly dependent on voltage and pH changes. Our smFRET studies uncover the stochastic conformational dynamics of S4 and demonstrate how voltage and pH shift its conformational distributions to regulate channel gating. Altogether, we propose a kinetic model that explains the mechanisms underlying voltage and pH gating in Hv channels, which may also serve as a general framework for understanding the voltage sensing and gating in other voltage-gated ion channels.

Data availability

The source data of all smFRET traces, contour maps, histograms, as well as liposome flux assay data is deposited in Dryad (Dryad Digital Repository, doi:10.5061/dryad.dv41ns1zs), including Fig 1b, c, d, e, g, h; Fig 2; Fig 3a and b; Fig 4a, b; Fig 5a, Fig 1-figure supplement1a and c, Fig1-figure supplement 2a, b, c; Fig1-figure supplement 3a, b; Fig1-figure supplement 4a and b.

The following data sets were generated

Article and author information

Author details

  1. Shuo Han

    Department of Cell Biology and Biophysics, University of Missouri-Kansas City, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Sophia Peng

    Department of Cell Biology and Biophysics, University of Missouri-Kansas City, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7434-5445
  3. Joshua Vance

    Department of Cell Biology and Biophysics, University of Missouri-Kansas City, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kimberly Tran

    Department of Cell Biology and Biophysics, University of Missouri-Kansas City, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Nhu Do

    Department of Cell Biology and Biophysics, University of Missouri-Kansas City, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Nauy Bui

    Department of Cell Biology and Biophysics, University of Missouri-Kansas City, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Zhenhua Gui

    Department of Cell Biology and Biophysics, University of Missouri-Kansas City, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Shizhen Wang

    Department of Cell Biology and Biophysics, University of Missouri-Kansas City, Kansas City, United States
    For correspondence
    wangshizhen@umkc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1065-4756

Funding

NIH (1R15GM137215-01)

  • Shizhen Wang

University of Missouri-Kansas City (Startup fund)

  • Shizhen Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2022, Han et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,649
    views
  • 299
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shuo Han
  2. Sophia Peng
  3. Joshua Vance
  4. Kimberly Tran
  5. Nhu Do
  6. Nauy Bui
  7. Zhenhua Gui
  8. Shizhen Wang
(2022)
Structural dynamics determine voltage and pH gating in human voltage-gated proton channel
eLife 11:e73093.
https://doi.org/10.7554/eLife.73093

Share this article

https://doi.org/10.7554/eLife.73093

Further reading

    1. Structural Biology and Molecular Biophysics
    Matt MacAinsh, Souvik Dey, Huan-Xiang Zhou
    Research Article

    The low-complexity domain of hnRNPA1 (A1-LCD) phase separates in a salt-dependent manner. Unlike many intrinsically disordered proteins (IDPs) whose phase separation is suppressed by increasing salt concentrations, the phase separation of A1-LCD is promoted by >100 mM NaCl. To investigate the atypical salt effect on A1-LCD phase separation, we carried out all-atom molecular dynamics simulations of systems comprising multiple A1-LCD chains at NaCl concentrations from 50 to 1000 mM NaCl. The ions occupy first shell as well as more distant sites around the IDP chains, with Arg sidechains and backbone carbonyls the favored partners of Cl and Na+, respectively. They play two direct roles in driving A1-LCD condensation. The first is to neutralize the high net charge of the protein (+9) by an excess of bound Cl over Na+; the second is to bridge between A1-LCD chains, thereby fortifying the intermolecular interaction networks in the dense phase. At high concentrations, NaCl also indirectly strengthens π–π, cation–π, and amino–π interactions, by drawing water away from the interaction partners. Therefore, at low salt, A1-LCD is prevented from phase separation by net charge repulsion; at intermediate concentrations, NaCl neutralizes enough of the net charge while also bridging IDP chains to drive phase separation. This drive becomes even stronger at high salt due to strengthened π-type interactions. Based on this understanding, four classes of salt dependence of IDP phase separation can be predicted from amino-acid composition.

    1. Structural Biology and Molecular Biophysics
    Surbhi Dhingra, Prachi M Chopade ... Janesh Kumar
    Research Article

    Kainate receptors are key modulators of synaptic transmission and plasticity in the central nervous system. Different kainate receptor isoforms with distinct spatiotemporal expressions have been identified in the brain. The GluK1-1 splice variant receptors, which are abundant in the adult brain, have an extra fifteen amino acids inserted in the amino-terminal domain (ATD) of the receptor resulting from alternative splicing of exon 9. However, the functional implications of this post-transcriptional modification are not yet clear. We employed a multi-pronged approach using cryogenic electron microscopy, electrophysiology, and other biophysical and biochemical tools to understand the structural and functional impact of this splice insert in the extracellular domain of GluK1 receptors. Our study reveals that the splice insert alters the key gating properties of GluK1 receptors and their modulation by the cognate auxiliary Neuropilin and tolloid-like (Neto) proteins 1 and 2. Mutational analysis identified the role of crucial splice residues that influence receptor properties and their modulation. Furthermore, the cryoEM structure of the variant shows that the presence of exon 9 in GluK1 does not affect the receptor architecture or domain arrangement in the desensitized state. Our study thus provides the first detailed structural and functional characterization of GluK1-1a receptors, highlighting the role of the splice insert in modulating receptor properties and their modulation.