Monitoring single-cell dynamics of entry into quiescence during an unperturbed lifecycle

  1. Basile Jacquel
  2. Théo Aspert
  3. Damien Laporte
  4. Isabelle Sagot
  5. Gilles Charvin  Is a corresponding author
  1. Institute of Genetics and Molecular and Cellular Biology, France
  2. Institut de Biochimie et Génétique Cellulaires, CNRS, France
  3. Institut National de la Santé et de la Recherche Médicale, France

Abstract

The life cycle of microorganisms is associated with dynamic metabolic transitions and complex cellular responses. In yeast, how metabolic signals control the progressive choreography of structural reorganizations observed in quiescent cells during a natural life cycle remains unclear. We have developed an integrated microfluidic device to address this question, enabling continuous single-cell tracking in a batch culture experiencing unperturbed nutrient exhaustion to unravel the coordination between metabolic and structural transitions within cells. Our technique reveals an abrupt fate divergence in the population, whereby a fraction of cells is unable to transition to respiratory metabolism and undergoes a reversible entry into a quiescence-like state leading to premature cell death. Further observations reveal that non-monotonous internal pH fluctuations in respiration-competent cells orchestrate the successive waves of protein super-assemblies formation that accompany the entry into a bona fide quiescent state. This ultimately leads to an abrupt cytosolic glass transition that occurs stochastically long after proliferation cessation. This new experimental framework provides a unique way to track single-cell fate dynamics over a long timescale in a population of cells that continuously modify their ecological niche.

Data availability

The CAD file used to generate the microfluidic device is available on a github repository. The source data used to make the panels (excluding raw image files) are included for each figure. Due to size constraints representative raw image data for Figure 1 is available at Zenodo (https://doi.org/10.5281/zenodo.5592983) and the remaining raw image data, including files for Figures 2 and 3, are available on request from the corresponding author.

The following data sets were generated

Article and author information

Author details

  1. Basile Jacquel

    Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Théo Aspert

    Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2957-0683
  3. Damien Laporte

    UMR5095, Institut de Biochimie et Génétique Cellulaires, CNRS, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Isabelle Sagot

    UMR5095, Institut de Biochimie et Génétique Cellulaires, CNRS, BORDEAUX, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2158-1783
  5. Gilles Charvin

    Department of Developmental Biology and Stem Cells, Institut National de la Santé et de la Recherche Médicale, Illkirch, France
    For correspondence
    charvin@igbmc.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6852-6952

Funding

Fondation pour la Recherche Médicale

  • Basile Jacquel

Agence Nationale de la Recherche

  • Théo Aspert

Agence Nationale de la Recherche

  • Gilles Charvin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bavesh D Kana, University of the Witwatersrand, South Africa

Version history

  1. Received: August 19, 2021
  2. Accepted: October 15, 2021
  3. Accepted Manuscript published: November 1, 2021 (version 1)
  4. Version of Record published: November 16, 2021 (version 2)
  5. Version of Record updated: November 29, 2021 (version 3)

Copyright

© 2021, Jacquel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,152
    views
  • 324
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Basile Jacquel
  2. Théo Aspert
  3. Damien Laporte
  4. Isabelle Sagot
  5. Gilles Charvin
(2021)
Monitoring single-cell dynamics of entry into quiescence during an unperturbed lifecycle
eLife 10:e73186.
https://doi.org/10.7554/eLife.73186

Share this article

https://doi.org/10.7554/eLife.73186

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Kevin Portmann, Aline Linder, Klaus Eyer
    Research Article

    Cytokine polyfunctionality is a well-established concept in immune cells, especially T cells, and their ability to concurrently produce multiple cytokines has been associated with better immunological disease control and subsequent effectiveness during infection and disease. To date, only little is known about the secretion dynamics of those cells, masked by the widespread deployment of mainly time-integrated endpoint measurement techniques that do not easily differentiate between concurrent and sequential secretion. Here, we employed a single-cell microfluidic platform capable of resolving the secretion dynamics of individual PBMCs. To study the dynamics of poly-cytokine secretion, as well as the dynamics of concurrent and sequential polyfunctionality, we analyzed the response at different time points after ex vivo activation. First, we observed the simultaneous secretion of cytokines over the measurement time for most stimulants in a subpopulation of cells only. Second, polyfunctionality generally decreased with prolonged stimulation times and revealed no correlation with the concentration of secreted cytokines in response to stimulation. However, we observed a general trend towards higher cytokine secretion in polyfunctional cells, with their secretion dynamics being distinctly different from mono-cytokine-secreting cells. This study provided insights into the distinct secretion behavior of heterogenous cell populations after stimulation with well-described agents and such a system could provide a better understanding of various immune dynamics in therapy and disease.

    1. Cell Biology
    2. Neuroscience
    Toshiharu Ichinose, Shu Kondo ... Hiromu Tanimoto
    Research Article

    Multicellular organisms are composed of specialized cell types with distinct proteomes. While recent advances in single-cell transcriptome analyses have revealed differential expression of mRNAs, cellular diversity in translational profiles remains underinvestigated. By performing RNA-seq and Ribo-seq in genetically defined cells in the Drosophila brain, we here revealed substantial post-transcriptional regulations that augment the cell-type distinctions at the level of protein expression. Specifically, we found that translational efficiency of proteins fundamental to neuronal functions, such as ion channels and neurotransmitter receptors, was maintained low in glia, leading to their preferential translation in neurons. Notably, distribution of ribosome footprints on these mRNAs exhibited a remarkable bias toward the 5′ leaders in glia. Using transgenic reporter strains, we provide evidence that the small upstream open-reading frames in the 5’ leader confer selective translational suppression in glia. Overall, these findings underscore the profound impact of translational regulation in shaping the proteomics for cell-type distinction and provide new insights into the molecular mechanisms driving cell-type diversity.