Monitoring single-cell dynamics of entry into quiescence during an unperturbed lifecycle

  1. Basile Jacquel
  2. Théo Aspert
  3. Damien Laporte
  4. Isabelle Sagot
  5. Gilles Charvin  Is a corresponding author
  1. Institute of Genetics and Molecular and Cellular Biology, France
  2. Institut de Biochimie et Génétique Cellulaires, CNRS, France
  3. Institut National de la Santé et de la Recherche Médicale, France

Abstract

The life cycle of microorganisms is associated with dynamic metabolic transitions and complex cellular responses. In yeast, how metabolic signals control the progressive choreography of structural reorganizations observed in quiescent cells during a natural life cycle remains unclear. We have developed an integrated microfluidic device to address this question, enabling continuous single-cell tracking in a batch culture experiencing unperturbed nutrient exhaustion to unravel the coordination between metabolic and structural transitions within cells. Our technique reveals an abrupt fate divergence in the population, whereby a fraction of cells is unable to transition to respiratory metabolism and undergoes a reversible entry into a quiescence-like state leading to premature cell death. Further observations reveal that non-monotonous internal pH fluctuations in respiration-competent cells orchestrate the successive waves of protein super-assemblies formation that accompany the entry into a bona fide quiescent state. This ultimately leads to an abrupt cytosolic glass transition that occurs stochastically long after proliferation cessation. This new experimental framework provides a unique way to track single-cell fate dynamics over a long timescale in a population of cells that continuously modify their ecological niche.

Data availability

The CAD file used to generate the microfluidic device is available on a github repository. The source data used to make the panels (excluding raw image files) are included for each figure. Due to size constraints representative raw image data for Figure 1 is available at Zenodo (https://doi.org/10.5281/zenodo.5592983) and the remaining raw image data, including files for Figures 2 and 3, are available on request from the corresponding author.

The following data sets were generated

Article and author information

Author details

  1. Basile Jacquel

    Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Théo Aspert

    Institute of Genetics and Molecular and Cellular Biology, Illkirch, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2957-0683
  3. Damien Laporte

    UMR5095, Institut de Biochimie et Génétique Cellulaires, CNRS, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Isabelle Sagot

    UMR5095, Institut de Biochimie et Génétique Cellulaires, CNRS, BORDEAUX, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2158-1783
  5. Gilles Charvin

    Department of Developmental Biology and Stem Cells, Institut National de la Santé et de la Recherche Médicale, Illkirch, France
    For correspondence
    charvin@igbmc.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6852-6952

Funding

Fondation pour la Recherche Médicale

  • Basile Jacquel

Agence Nationale de la Recherche

  • Théo Aspert

Agence Nationale de la Recherche

  • Gilles Charvin

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bavesh D Kana, University of the Witwatersrand, South Africa

Version history

  1. Received: August 19, 2021
  2. Accepted: October 15, 2021
  3. Accepted Manuscript published: November 1, 2021 (version 1)
  4. Version of Record published: November 16, 2021 (version 2)
  5. Version of Record updated: November 29, 2021 (version 3)

Copyright

© 2021, Jacquel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,064
    Page views
  • 313
    Downloads
  • 12
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Basile Jacquel
  2. Théo Aspert
  3. Damien Laporte
  4. Isabelle Sagot
  5. Gilles Charvin
(2021)
Monitoring single-cell dynamics of entry into quiescence during an unperturbed lifecycle
eLife 10:e73186.
https://doi.org/10.7554/eLife.73186

Share this article

https://doi.org/10.7554/eLife.73186

Further reading

    1. Cell Biology
    2. Neuroscience
    Haibin Yu, Dandan Liu ... Kai Yuan
    Research Article

    O-GlcNAcylation is a dynamic post-translational modification that diversifies the proteome. Its dysregulation is associated with neurological disorders that impair cognitive function, and yet identification of phenotype-relevant candidate substrates in a brain-region specific manner remains unfeasible. By combining an O-GlcNAc binding activity derived from Clostridium perfringens OGA (CpOGA) with TurboID proximity labeling in Drosophila, we developed an O-GlcNAcylation profiling tool that translates O-GlcNAc modification into biotin conjugation for tissue-specific candidate substrates enrichment. We mapped the O-GlcNAc interactome in major brain regions of Drosophila and found that components of the translational machinery, particularly ribosomal subunits, were abundantly O-GlcNAcylated in the mushroom body of Drosophila brain. Hypo-O-GlcNAcylation induced by ectopic expression of active CpOGA in the mushroom body decreased local translational activity, leading to olfactory learning deficits that could be rescued by dMyc overexpression-induced increase of protein synthesis. Our study provides a useful tool for future dissection of tissue-specific functions of O-GlcNAcylation in Drosophila, and suggests a possibility that O-GlcNAcylation impacts cognitive function via regulating regional translational activity in the brain.

    1. Cancer Biology
    2. Cell Biology
    Ibtisam Ibtisam, Alexei F Kisselev
    Short Report

    Rapid recovery of proteasome activity may contribute to intrinsic and acquired resistance to FDA-approved proteasome inhibitors. Previous studies have demonstrated that the expression of proteasome genes in cells treated with sub-lethal concentrations of proteasome inhibitors is upregulated by the transcription factor Nrf1 (NFE2L1), which is activated by a DDI2 protease. Here, we demonstrate that the recovery of proteasome activity is DDI2-independent and occurs before transcription of proteasomal genes is upregulated but requires protein translation. Thus, mammalian cells possess an additional DDI2 and transcription-independent pathway for the rapid recovery of proteasome activity after proteasome inhibition.