A molecular mechanism for the generation of ligand-dependent differential outputs by the epidermal growth factor receptor

  1. Yongjian Huang
  2. Jana Ognjenovic
  3. Deepti Karandur
  4. Kate Miller
  5. Alan Merk
  6. Sriram Subramaniam  Is a corresponding author
  7. John Kuriyan  Is a corresponding author
  1. University of California, Berkeley, United States
  2. Frederick National Laboratory for Cancer Research, United States
  3. Howard Hughes Medical Institute, University of California, Berkeley, United States
  4. University of British Columbia, Canada

Abstract

The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that couples the binding of extracellular ligands, such as EGF and transforming growth factor-α (TGF-α), to the initiation of intracellular signaling pathways. EGFR binds to EGF and TGF-α with similar affinity, but generates different signals from these ligands. To address the mechanistic basis of this phenomenon, we have carried out cryo-EM analyses of human EGFR bound to EGF and TGF-α. We show that the extracellular module adopts an ensemble of dimeric conformations when bound to either EGF or TGF-α. The two extreme states of this ensemble represent distinct ligand-bound quaternary structures in which the membrane-proximal tips of the extracellular module are either juxtaposed or separated. EGF and TGF-α differ in their ability to maintain the conformation with the membrane-proximal tips of the extracellular module separated, and this conformation is stabilized preferentially by an oncogenic EGFR mutation. Close proximity of the transmembrane helices at the junction with the extracellular module has been associated previously with increased EGFR activity. Our results show how EGFR can couple the binding of different ligands to differential modulation of this proximity, thereby suggesting a molecular mechanism for the generation of ligand-sensitive differential outputs in this receptor family.

Data availability

Human EGFR protein sequence is available from UniProt accession no. P00533. The cryo-EM density maps of EGFR(WT):EGF complex in juxtaposed and separated conformations, EGFR(WT):TGF-a complex in juxtaposed and separated conformations, EGFR(L834R):EGF complex in juxtaposed and separated conformations, have been deposited to the Electron Microscopy Data Bank (EMDB) under the accession codes EMD-25522 and EMD-25523, EMD-25563 and EMD-25561, EMD-25558 and EMD-25559, respectively. The associated coordinates have been deposited to the PDB under accession codes 7SYD and 7SYE, 7SZ7 and 7SZ5, 7SZ0 and 7SZ1, respectively.

The following data sets were generated

Article and author information

Author details

  1. Yongjian Huang

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  2. Jana Ognjenovic

    Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    No competing interests declared.
  3. Deepti Karandur

    Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    Deepti Karandur, D.K. is an early-career reviewer for eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6949-6337
  4. Kate Miller

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  5. Alan Merk

    Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    No competing interests declared.
  6. Sriram Subramaniam

    Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
    For correspondence
    Sriram.Subramaniam@ubc.ca
    Competing interests
    Sriram Subramaniam, S.S. is Founder and Chief Executive Officer of Gandeeva Therapeutics Inc.Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4231-4115
  7. John Kuriyan

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    jkuriyan@mac.com
    Competing interests
    John Kuriyan, J.K. is a cofounder of Nurix Therapeutics and is on the scientific advisory boards of Carmot and Revolution Medicine..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4414-5477

Funding

Canada Excellence Research Chairs, Government of Canada

  • Sriram Subramaniam

VGH and UBC Hospital Foundation

  • Sriram Subramaniam

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Huang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,831
    views
  • 1,395
    downloads
  • 51
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yongjian Huang
  2. Jana Ognjenovic
  3. Deepti Karandur
  4. Kate Miller
  5. Alan Merk
  6. Sriram Subramaniam
  7. John Kuriyan
(2021)
A molecular mechanism for the generation of ligand-dependent differential outputs by the epidermal growth factor receptor
eLife 10:e73218.
https://doi.org/10.7554/eLife.73218

Share this article

https://doi.org/10.7554/eLife.73218

Further reading

    1. Biochemistry and Chemical Biology
    Swarang Sachin Pundlik, Alok Barik ... Arvind Ramanathan
    Short Report

    Senescent cells are characterized by multiple features such as increased expression of senescence-associated β-galactosidase activity (SA β-gal) and cell cycle inhibitors such as p21 or p16. They accumulate with tissue damage and dysregulate tissue homeostasis. In the context of skeletal muscle, it is known that agents used for chemotherapy such as Doxorubicin (Doxo) cause buildup of senescent cells, leading to the inhibition of tissue regeneration. Senescent cells influence the neighboring cells via numerous secreted factors which form the senescence-associated secreted phenotype (SASP). Lipids are emerging as a key component of SASP that can control tissue homeostasis. Arachidonic acid-derived lipids have been shown to accumulate within senescent cells, specifically 15d-PGJ2, which is an electrophilic lipid produced by the non-enzymatic dehydration of the prostaglandin PGD2. This study shows that 15d-PGJ2 is also released by Doxo-induced senescent cells as an SASP factor. Treatment of skeletal muscle myoblasts with the conditioned medium from these senescent cells inhibits myoblast fusion during differentiation. Inhibition of L-PTGDS, the enzyme that synthesizes PGD2, diminishes the release of 15d-PGJ2 by senescent cells and restores muscle differentiation. We further show that this lipid post-translationally modifies Cys184 of HRas in C2C12 mouse skeletal myoblasts, causing a reduction in the localization of HRas to the Golgi, increased HRas binding to Ras Binding Domain (RBD) of RAF Kinase (RAF-RBD), and activation of cellular Mitogen Activated Protein (MAP) kinase–Extracellular Signal Regulated Kinase (Erk) signaling (but not the Akt signaling). Mutating C184 of HRas prevents the ability of 15d-PGJ2 to inhibit the differentiation of muscle cells and control the activity of HRas. This work shows that 15d-PGJ2 released from senescent cells could be targeted to restore muscle homeostasis after chemotherapy.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Duk-Su Koh, Anastasiia Stratiievska ... Sharona E Gordon
    Tools and Resources

    Ligands such as insulin, epidermal growth factor, platelet-derived growth factor, and nerve growth factor (NGF) initiate signals at the cell membrane by binding to receptor tyrosine kinases (RTKs). Along with G-protein-coupled receptors, RTKs are the main platforms for transducing extracellular signals into intracellular signals. Studying RTK signaling has been a challenge, however, due to the multiple signaling pathways to which RTKs typically are coupled, including MAP/ERK, PLCγ, and Class 1A phosphoinositide 3-kinases (PI3K). The multi-pronged RTK signaling has been a barrier to isolating the effects of any one downstream pathway. Here, we used optogenetic activation of PI3K to decouple its activation from other RTK signaling pathways. In this context, we used genetic code expansion to introduce a click chemistry noncanonical amino acid into the extracellular side of membrane proteins. Applying a cell-impermeant click chemistry fluorophore allowed us to visualize delivery of membrane proteins to the plasma membrane in real time. Using these approaches, we demonstrate that activation of PI3K, without activating other pathways downstream of RTK signaling, is sufficient to traffic the TRPV1 ion channels and insulin receptors to the plasma membrane.