A molecular mechanism for the generation of ligand-dependent differential outputs by the epidermal growth factor receptor

  1. Yongjian Huang
  2. Jana Ognjenovic
  3. Deepti Karandur
  4. Kate Miller
  5. Alan Merk
  6. Sriram Subramaniam  Is a corresponding author
  7. John Kuriyan  Is a corresponding author
  1. University of California, Berkeley, United States
  2. Frederick National Laboratory for Cancer Research, United States
  3. Howard Hughes Medical Institute, University of California, Berkeley, United States
  4. University of British Columbia, Canada

Abstract

The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that couples the binding of extracellular ligands, such as EGF and transforming growth factor-α (TGF-α), to the initiation of intracellular signaling pathways. EGFR binds to EGF and TGF-α with similar affinity, but generates different signals from these ligands. To address the mechanistic basis of this phenomenon, we have carried out cryo-EM analyses of human EGFR bound to EGF and TGF-α. We show that the extracellular module adopts an ensemble of dimeric conformations when bound to either EGF or TGF-α. The two extreme states of this ensemble represent distinct ligand-bound quaternary structures in which the membrane-proximal tips of the extracellular module are either juxtaposed or separated. EGF and TGF-α differ in their ability to maintain the conformation with the membrane-proximal tips of the extracellular module separated, and this conformation is stabilized preferentially by an oncogenic EGFR mutation. Close proximity of the transmembrane helices at the junction with the extracellular module has been associated previously with increased EGFR activity. Our results show how EGFR can couple the binding of different ligands to differential modulation of this proximity, thereby suggesting a molecular mechanism for the generation of ligand-sensitive differential outputs in this receptor family.

Data availability

Human EGFR protein sequence is available from UniProt accession no. P00533. The cryo-EM density maps of EGFR(WT):EGF complex in juxtaposed and separated conformations, EGFR(WT):TGF-a complex in juxtaposed and separated conformations, EGFR(L834R):EGF complex in juxtaposed and separated conformations, have been deposited to the Electron Microscopy Data Bank (EMDB) under the accession codes EMD-25522 and EMD-25523, EMD-25563 and EMD-25561, EMD-25558 and EMD-25559, respectively. The associated coordinates have been deposited to the PDB under accession codes 7SYD and 7SYE, 7SZ7 and 7SZ5, 7SZ0 and 7SZ1, respectively.

The following data sets were generated

Article and author information

Author details

  1. Yongjian Huang

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  2. Jana Ognjenovic

    Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    No competing interests declared.
  3. Deepti Karandur

    Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    Deepti Karandur, D.K. is an early-career reviewer for eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6949-6337
  4. Kate Miller

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  5. Alan Merk

    Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    No competing interests declared.
  6. Sriram Subramaniam

    Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
    For correspondence
    Sriram.Subramaniam@ubc.ca
    Competing interests
    Sriram Subramaniam, S.S. is Founder and Chief Executive Officer of Gandeeva Therapeutics Inc.Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4231-4115
  7. John Kuriyan

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    jkuriyan@mac.com
    Competing interests
    John Kuriyan, J.K. is a cofounder of Nurix Therapeutics and is on the scientific advisory boards of Carmot and Revolution Medicine..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4414-5477

Funding

Canada Excellence Research Chairs, Government of Canada

  • Sriram Subramaniam

VGH and UBC Hospital Foundation

  • Sriram Subramaniam

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Huang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 11,375
    views
  • 1,539
    downloads
  • 61
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.73218

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Joar Esteban Pinto Torres, Mathieu Claes ... Yann G-J Sterckx
    Research Article

    African trypanosomes are the causative agents of neglected tropical diseases affecting both humans and livestock. Disease control is highly challenging due to an increasing number of drug treatment failures. African trypanosomes are extracellular, blood-borne parasites that mainly rely on glycolysis for their energy metabolism within the mammalian host. Trypanosomal glycolytic enzymes are therefore of interest for the development of trypanocidal drugs. Here, we report the serendipitous discovery of a camelid single-domain antibody (sdAb aka Nanobody) that selectively inhibits the enzymatic activity of trypanosomatid (but not host) pyruvate kinases through an allosteric mechanism. By combining enzyme kinetics, biophysics, structural biology, and transgenic parasite survival assays, we provide a proof-of-principle that the sdAb-mediated enzyme inhibition negatively impacts parasite fitness and growth.

    1. Biochemistry and Chemical Biology
    Jianheng Fox Liu, Ben R Hawley ... Samie R Jaffrey
    Tools and Resources

    N 6,2’-O-dimethyladenosine (m6Am) is a modified nucleotide located at the first transcribed position in mRNA and snRNA that is essential for diverse physiological processes. m6Am mapping methods assume each gene uses a single start nucleotide. However, gene transcription usually involves multiple start sites, generating numerous 5’ isoforms. Thus, gene-level annotations cannot capture the diversity of m6Am modification in the transcriptome. Here, we describe CROWN-seq, which simultaneously identifies transcription-start nucleotides and quantifies m6Am stoichiometry for each 5’ isoform that initiates with adenosine. Using CROWN-seq, we map the m6Am landscape in nine human cell lines. Our findings reveal that m6Am is nearly always a high stoichiometry modification, with only a small subset of cellular mRNAs showing lower m6Am stoichiometry. We find that m6Am is associated with increased transcript expression and provide evidence that m6Am may be linked to transcription initiation associated with specific promoter sequences and initiation mechanisms. These data suggest a potential new function for m6Am in influencing transcription.