A molecular mechanism for the generation of ligand-dependent differential outputs by the epidermal growth factor receptor

  1. Yongjian Huang
  2. Jana Ognjenovic
  3. Deepti Karandur
  4. Kate Miller
  5. Alan Merk
  6. Sriram Subramaniam  Is a corresponding author
  7. John Kuriyan  Is a corresponding author
  1. University of California, Berkeley, United States
  2. Frederick National Laboratory for Cancer Research, United States
  3. Howard Hughes Medical Institute, University of California, Berkeley, United States
  4. University of British Columbia, Canada

Abstract

The epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that couples the binding of extracellular ligands, such as EGF and transforming growth factor-α (TGF-α), to the initiation of intracellular signaling pathways. EGFR binds to EGF and TGF-α with similar affinity, but generates different signals from these ligands. To address the mechanistic basis of this phenomenon, we have carried out cryo-EM analyses of human EGFR bound to EGF and TGF-α. We show that the extracellular module adopts an ensemble of dimeric conformations when bound to either EGF or TGF-α. The two extreme states of this ensemble represent distinct ligand-bound quaternary structures in which the membrane-proximal tips of the extracellular module are either juxtaposed or separated. EGF and TGF-α differ in their ability to maintain the conformation with the membrane-proximal tips of the extracellular module separated, and this conformation is stabilized preferentially by an oncogenic EGFR mutation. Close proximity of the transmembrane helices at the junction with the extracellular module has been associated previously with increased EGFR activity. Our results show how EGFR can couple the binding of different ligands to differential modulation of this proximity, thereby suggesting a molecular mechanism for the generation of ligand-sensitive differential outputs in this receptor family.

Data availability

Human EGFR protein sequence is available from UniProt accession no. P00533. The cryo-EM density maps of EGFR(WT):EGF complex in juxtaposed and separated conformations, EGFR(WT):TGF-a complex in juxtaposed and separated conformations, EGFR(L834R):EGF complex in juxtaposed and separated conformations, have been deposited to the Electron Microscopy Data Bank (EMDB) under the accession codes EMD-25522 and EMD-25523, EMD-25563 and EMD-25561, EMD-25558 and EMD-25559, respectively. The associated coordinates have been deposited to the PDB under accession codes 7SYD and 7SYE, 7SZ7 and 7SZ5, 7SZ0 and 7SZ1, respectively.

The following data sets were generated

Article and author information

Author details

  1. Yongjian Huang

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  2. Jana Ognjenovic

    Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    No competing interests declared.
  3. Deepti Karandur

    Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    Deepti Karandur, D.K. is an early-career reviewer for eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6949-6337
  4. Kate Miller

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  5. Alan Merk

    Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    No competing interests declared.
  6. Sriram Subramaniam

    Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
    For correspondence
    Sriram.Subramaniam@ubc.ca
    Competing interests
    Sriram Subramaniam, S.S. is Founder and Chief Executive Officer of Gandeeva Therapeutics Inc.Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4231-4115
  7. John Kuriyan

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    jkuriyan@mac.com
    Competing interests
    John Kuriyan, J.K. is a cofounder of Nurix Therapeutics and is on the scientific advisory boards of Carmot and Revolution Medicine..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4414-5477

Funding

Canada Excellence Research Chairs, Government of Canada

  • Sriram Subramaniam

VGH and UBC Hospital Foundation

  • Sriram Subramaniam

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mingjie Zhang, Hong Kong University of Science and Technology, Hong Kong

Version history

  1. Preprint posted: December 9, 2020 (view preprint)
  2. Received: August 20, 2021
  3. Accepted: November 19, 2021
  4. Accepted Manuscript published: November 30, 2021 (version 1)
  5. Version of Record published: December 24, 2021 (version 2)

Copyright

© 2021, Huang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,687
    views
  • 1,285
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yongjian Huang
  2. Jana Ognjenovic
  3. Deepti Karandur
  4. Kate Miller
  5. Alan Merk
  6. Sriram Subramaniam
  7. John Kuriyan
(2021)
A molecular mechanism for the generation of ligand-dependent differential outputs by the epidermal growth factor receptor
eLife 10:e73218.
https://doi.org/10.7554/eLife.73218

Share this article

https://doi.org/10.7554/eLife.73218

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Isabelle Petit-Hartlein, Annelise Vermot ... Franck Fieschi
    Research Article

    NADPH oxidases (NOX) are transmembrane proteins, widely spread in eukaryotes and prokaryotes, that produce reactive oxygen species (ROS). Eukaryotes use the ROS products for innate immune defense and signaling in critical (patho)physiological processes. Despite the recent structures of human NOX isoforms, the activation of electron transfer remains incompletely understood. SpNOX, a homolog from Streptococcus pneumoniae, can serves as a robust model for exploring electron transfers in the NOX family thanks to its constitutive activity. Crystal structures of SpNOX full-length and dehydrogenase (DH) domain constructs are revealed here. The isolated DH domain acts as a flavin reductase, and both constructs use either NADPH or NADH as substrate. Our findings suggest that hydride transfer from NAD(P)H to FAD is the rate-limiting step in electron transfer. We identify significance of F397 in nicotinamide access to flavin isoalloxazine and confirm flavin binding contributions from both DH and Transmembrane (TM) domains. Comparison with related enzymes suggests that distal access to heme may influence the final electron acceptor, while the relative position of DH and TM does not necessarily correlate with activity, contrary to previous suggestions. It rather suggests requirement of an internal rearrangement, within the DH domain, to switch from a resting to an active state. Thus, SpNOX appears to be a good model of active NOX2, which allows us to propose an explanation for NOX2’s requirement for activation.