CREB5 reprograms FOXA1 nuclear interactions to promote resistance to androgen receptor targeting therapies
Abstract
Metastatic castration resistant prostate cancers (mCRPC) are treated with therapies that antagonize the androgen receptor (AR). Nearly all patients develop resistance to AR-targeted therapies (ART). Our previous work identified CREB5 as an upregulated target gene in human mCRPC that promoted resistance to all clinically-approved ART. The mechanisms by which CREB5 promotes progression of mCRPC or other cancers remains elusive. Integrating ChIP-seq and rapid immunoprecipitation and mass spectroscopy of endogenous proteins (RIME), we report that cells overexpressing CREB5 demonstrate extensive reprogramming of nuclear protein-protein interactions in response to the ART agent enzalutamide. Specifically, CREB5 physically interacts with AR, the pioneering actor FOXA1, and other known co-factors of AR and FOXA1 at transcription regulatory elements recently found to be active in mCRPC patients. We identified a subset of CREB5/FOXA1 co-interacting nuclear factors that have critical functions for AR transcription (GRHL2, HOXB13) while others (TBX3, NFIC) regulated cell viability and ART resistance and were amplified or overexpressed in mCRPC. Upon examining the nuclear protein interactions and the impact of CREB5 expression on the mCRPC patient transcriptome, we found CREB5 was associated with Wnt signaling and epithelial to mesenchymal transitions, implicating these pathways in CREB5/FOXA1-mediated ART resistance. Overall, these observations define the molecular interactions among CREB5, FOXA1, and pathways that promote ART resistance.
Data availability
RIME data has been shared through supplementary tables.
-
CREB5 promotes resistance to androgen-receptor antagonists and androgen deprivation in prostate cancerNCBI Gene Expression Omnibus, GSE137775.
-
ChIP-seq from HepG2 (ENCLB611SYU)NCBI Gene Expression Omnibus, GSM2825557.
-
ChIP-seq for NFICNCBI Gene Expression Omnibus, GSM2902642.
Article and author information
Author details
Funding
University of Minnesota (Start up funds)
- Justin H Hwang
National Cancer Institute (U01 CA176058)
- William C Hahn
National Cancer Institute (U01 CA233100)
- Eliezer M Van Allen
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2022, Hwang et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,182
- views
-
- 385
- downloads
-
- 15
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 15
- citations for umbrella DOI https://doi.org/10.7554/eLife.73223